

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

August 2011

Submitted to:

United States Environmental Protection Agency Region 1 5 Post Office Square, Suite 100 Boston, Massachusetts 02109-3912

Prepared for:

UniFirst Corporation
68 Jonspin Road

Wilmington, Massachusetts 01887

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

Nadine Weinberg

Principal Scientist/Project Manager

Madine Weinbug

Brian Magee, PhD

Vice President and Principal Toxicologist

Human Health Risk Assessment Technical Leader

ARCADIS U.S., Inc. 482 Congress St Suite 501 Portland

Prepared by:

Maine 04101 Tel 207.828.0046 Fax 207.828.0062

Our Ref.:

MA000989.0002

Date:

August 2011

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	. Introduction						
2.	Sampli	ng Pr	ogram	1			
	2.1	Pre-S	Sampling Activities	2			
	2.2	Indo	or Ambient Air Assessment	2			
	2.3	Outd	loor Ambient Air Assessment	3			
	2.4	Sub-	Slab Soil Vapor Assessment	3			
	2.5	Data	Synthesis and Reporting	4			
3.	Results	s and	Discussion	5			
	3.1	Indo	or and Outdoor Ambient Air Sampling Results	5			
	3.2	Sub-	Slab Soil Vapor Sampling Results	5			
	3.3	Eval	uation of Indoor Air and Sub-Slab Soil Vapor Results	6			
	3.4	Resi	dence Human Health Risk Evaluation	7			
4.	Summa	ary ar	nd Conclusions	8			
5.	Recom	menc	dations	8			
6.	Refere	nces		9			
Tal	bles						
	Table	1	Indoor and Ambient Air Sampling Results - Residence				
	Table	2	Sub-Slab Soil Vapor Sampling Results - Residence				
Fig	jures						
	Figure	e 1	Residence Sample Locations – June 2011				
Ар	pendice	S					
	Α	Sam	npling Logs				
	В	Build	ding Survey and Product Inventory Field Form				
	C Data Validation Report						

Table of Contents

- D Laboratory Analytical Data Package
- E Preliminary Human Health Risk Evaluation Report

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

1. Introduction

On behalf of UniFirst Corporation (UniFirst), ARCADIS has prepared this Indoor Air Quality and Vapor Intrusion Assessment: Report of Second Sampling Round Results for sampling conducted on June 16-17, 2011 at the southern half of the residential duplex in Woburn, Massachusetts, identified in the tax assessors' records as Woburn Parcel Number 26/05/05 (the Residence). ARCADIS conducted sub-slab soil vapor, indoor ambient air, and outdoor ambient air sampling at the Residence during June 2011. All work was completed in accordance with the *Vapor Intrusion Assessment Work Plan* (*Work Plan*) approved by the United States Environmental Protection Agency (USEPA) on February 17, 2011 (ARCADIS 2011a).

As stated in the *Work Plan*, USEPA requested that sub-slab soil vapor, indoor air, and ambient air samples be collected from certain residential and commercial properties located on Olympia Avenue, Oregon Avenue, and Marietta Street (Study Area). The Residence is one of the properties that USEPA identified for study. The *Work Plan* was submitted to and approved by USEPA to establish the sampling methods and procedures to be followed. The objectives of the sampling were to:

- Measure concentrations of volatile organic compounds (VOCs) in sub-slab soil vapor and indoor air at each property identified for study by USEPA in the Study Area; and
- Measure concentrations of VOCs in outdoor air near these properties to evaluate atmospheric conditions at the time of indoor air sample collection.

The results of the second round of vapor intrusion sampling, sampling methodology, a discussion of the sampling results including a preliminary human health risk evaluation, and recommendations for future actions are provided below. A comparison of results from both the first sampling round (April 21-22, 2011) and the current (second) sampling round (June 16-17, 2011) is also presented.

2. Sampling Program

Consistent with the *Work Plan* (ARCADIS 2011a), ARCADIS collected a second round of sub-slab soil vapor, indoor air, and ambient air samples from the Residence on June 16-17, 2011. Specific sampling methodologies were consistent with the *Indoor Air Quality and Vapor Intrusion Assessment Scope of Work – Revision 2 (SOW) (JCO 2010a) and the <i>Quality Assurance Project Plan – Revision 1* (QAPP) (JCO 2010b) and

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

the previous sampling round. Pre-sampling activities, sampling methodologies, and sample locations are described below. Sample logs are provided in Appendix A.

2.1 Pre-Sampling Activities

Prior to sampling, ARCADIS, in coordination with USEPA, was granted access to the Residence from the current property owner. ARCADIS conducted a site reconnaissance to identify the building and foundation condition, building materials, heating, ventilation, and air conditioning (HVAC) operation, and potential preferential vapor migration pathways (i.e., sump pump, floor drains, cracks, etc.). To the extent feasible (the premises are leased to tenants), a product inventory was completed to list items observed in the building that may contain VOCs that could potentially interfere with sample results, and identified VOC-containing products that could be removed were taken out of the basement of the Residence prior to sampling.

During the building survey the following potential background sources were identified:

- Cleaning products containing bleach were noted in the home during the site visit, which may be a source of chloroform via reactions with other cleaning products (Odabasi 2008).
- Various other cleaning products and aerosols were also noted during the product inventory.

Indoor air sampling was conducted only in the basement; however, a limited survey was also extended to the first floor. None of the current tenants were at the home during the sampling and it was not possible to ask about specific background contributions, including dry cleaning. All products found in the basement were containerized and removed from the home approximately 48-hours prior to sampling. The resident also removed her dry-cleaned clothing approximately 24-hours prior to sampling. The building survey and product inventory can be found in Appendix B.

2.2 Indoor Ambient Air Assessment

On June 16, 2011, indoor air samples were collected from two locations on the basement level of the Residence. Indoor air samples collected in the basement were co-located with the installed sub-slab soil vapor points and were consistent with the previous round of sampling. The basement of the Residence is used as a primary living space and, consistent with the approved *Work Plan*, no other floors were sampled.

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

Sample methods were consistent with the *SOW* (JCO 2010a) and *QAPP* (JCO 2010b). Samples were collected from the breathing zone (3 to 4 feet above ground surface) above each sub-slab soil vapor location. To avoid any cross contamination issues with potential vapors under the floor slab, indoor air samples were collected prior to sub-slab soil vapor samples. To ensure a reasonable worst case scenario, indoor air sampling was conducted with all exterior building doors closed to avoid any dilution with outside air.

Samples were collected over a 24-hour period in individually certified six-liter passivated sample canisters provided by Alpha Analytical, Inc. of Mansfield, Massachusetts (Alpha), a National Environmental Laboratory Accreditation Conference (NELAC) (E87814) certified laboratory. Canisters were analyzed for VOCs by USEPA Method TO-15 featuring selective ion monitoring (SIM). Detailed sample collection methods are included in the SOW (JCO 2010a) and in SOP-JCO-063 contained in the QAPP (JCO 2010b). Sample logs from indoor air sampling are included in Appendix A.

2.3 Outdoor Ambient Air Assessment

On June 16, 2011, one outdoor air sample was collected from an upwind location outside the Residence using the same methods as described for indoor air samples. The sample was collected to understand what contribution the ambient environment may have on indoor air samples collected from inside the building. Sample locations are presented in Figure 1. The outdoor ambient air and indoor air samples were collected over approximately the same 24-hour time period with the outdoor sample being started immediately prior to the indoor air samples. Sample logs from ambient air sampling are included in Appendix A.

2.4 Sub-Slab Soil Vapor Assessment

Two permanent sub-slab soil vapor sample points were installed in the basement of the Residence on April 20, 2011 (Figure 1). Installation methods for the two points were previously reported in the *Work Plan* and the Indoor Air Quality and Vapor Intrusion Assessment (ARCADIS 2011a, b).

At the completion of the indoor air sampling on June 17, 2011, sub-slab soil vapor samples were collected from two locations in the Residence. The integrity of each sample port was tested using a helium tracer test. These methods were presented in the *Work Plan* (ARCADIS 2011a). One duplicate sample was collected as a quality

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

control measure utilizing a decontaminated stainless steel "T" fitting provided by the laboratory.

Prior to sampling, three volumes of the sample tubing were purged utilizing a low-flow pump to remove any ambient air from the sampling train. Detailed methods for sampling are included in SOP-JCO-062 contained in the *QAPP* (JCO 2010b). Samples were collected over a 30-minute period in individually certified six-liter passivated sample canisters provided by Alpha. Canisters were analyzed for VOCs by USEPA Method TO-15 featuring SIM. Sample logs from sub-slab soil vapor sampling are included in Appendix A.

Upon the completion of the second round of sub-slab soil vapor sampling (June 17, 2011) the sub-slab soil vapor points were removed. Points were removed from the floor slab using a chisel, hammer, and pry-bar. After removing each sampling point, the drilled hole was vacuumed out and filled with hydraulic cement. Where appropriate, the overlying carpeting was glued back down using low-VOC carpet adhesive.

2.5 Data Synthesis and Reporting

Analytical data packages generated by the laboratory were validated by Phoenix Chemistry Services according to national guidelines for tier III data validation as described in the SOW (JCO 2010a) and QAPP (JCO 2010b). The data review included: field documentation, proper holding times, proper chain-of-custody documentation, achievement of target reporting limits, acceptable laboratory calibrations and quality control parameters, and representativeness of duplicate results.

Findings of the validation effort resulted in the following qualifications of sample results:

- Results for naphthalene and 1,3-butadiene in all samples were qualified as estimated (J, UJ).
- Positive results greater than the sample-specific (adjusted) quantitation limit but less than the action limit (at twice the detected concentration) for methylene chloride in OA-1, and toluene in samples SS-4, SS-4-Duplicate, and SS-5 were qualified as less than the reported value (U).

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

Quality control results, including any revisions or qualifiers deemed necessary, are included in Tables 1 and 2. The data validation report is included in Appendix C. The laboratory analytical data package is included in Appendix D.

3. Results and Discussion

This section presents results for indoor air, outdoor ambient air, and sub-slab soil vapor samples collected from the Residence including a summary evaluation of potential human health risks. A copy of the complete Preliminary Human Health Risk Evaluation can be found in Appendix E.

3.1 Indoor and Outdoor Ambient Air Sampling Results

Analytical data for indoor and outdoor ambient air samples are presented on Table 1. The following compounds were detected in both indoor air samples: 1,2,4-trimethylbenzene, 1,2-dichloroethane, 1,2-dichloropropane, 1,3-butadiene, benzene, bromodichloromethane, carbon tetrachloride, chloroform, ethylbenzene, naphthalene, tetrachloroethene (PCE), toluene, and xylenes. Detected concentrations of these constituents are presented in Table 1.

The following constituents were detected in the outdoor ambient air sample: 1,2,4-trimethylbenzene, benzene, carbon tetrachloride, chloroform, ethylbenzene, naphthalene, toluene, and xylenes. Detected concentrations of these constituents are presented in Table 1.

A comparison of the data indicates that several constituents were detected in both outdoor and indoor air. Carbon tetrachloride and naphthalene were measured at similar concentrations in indoor and outdoor air. Although 1,2,4-trimethylbenzene, benzene, chloroform, ethylbenzene, toluene, and xylenes were detected in both outdoor and indoor air, concentrations were slightly greater in indoor air compared to outdoor ambient air.

3.2 Sub-Slab Soil Vapor Sampling Results

Analytical data for sub-slab soil vapor are presented in Table 2. The following compounds were detected in both sub-slab soil vapor samples: 1,2,4-trimethylbenzene, carbon tetrachloride, chloroform, PCE, and toluene. 1,1,1-Trichlorethane and naphthalene were only detected in one sub-slab soil vapor sample,

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

SS-4. The full list of detected constituents and their concentrations are presented in Table 2.

3.3 Evaluation of Indoor Air and Sub-Slab Soil Vapor Results

The data results for indoor air and sub-slab soil vapor were evaluated together to determine if indoor air samples were associated with a potential background source. As a first step, attenuation factors (AFs) were calculated to evaluate if chemicals present in indoor air are potentially associated with sub-slab soil vapor levels, or if chemicals may be attributable to background sources. The AF is the ratio of indoor air to sub-slab soil vapor results and was calculated when a constituent was detected in both indoor air and sub-slab soil vapor. AFs close to or greater than one indicate that indoor air concentrations are equal to or higher than sub-slab soil vapor concentrations and therefore, that a background source likely is present. Of the 13 chemicals detected in indoor air, AFs could be calculated for five chemicals. The following four chemicals had AFs close to or greater than one: 1,2,4-trimethylbenzene, carbon tetrachloride, chloroform, and naphthalene. As a result, the presence of these chemicals in indoor air is attributable to background sources and not soil vapor intrusion. The calculation of AFs is presented in Table 2 of Appendix E. The AF calculated for PCE was 0.27, which suggests a background source, such as dry cleaned clothing, may be contributing to the concentration noted in indoor air (Magee et al. 2008). As noted above, ARCADIS' field staff did not conduct an inventory in the upstairs portion of the Residence and were not able to interview the actual tenants of the Residence, because they were not present during the sampling event.

Second, the data were evaluated to identify constituents that were detected in indoor air, but not in sub-slab soil vapor. These results indicate that a background material is the only source of the detected indoor air concentrations. The following constituents were identified as having background sources based on this criterion: 1,2-dichloroperopane, 1,3-butadiene, benzene, bromodichloromethane, ethylbenzene, toluene, and xylenes.

Third, the results of indoor air and outdoor air samples were compared. Carbon tetrachloride and naphthalene were measured at similar concentrations in both outdoor and indoor air. These results indicate background sources are present in outdoor ambient air.

PCE was detected in indoor air at a lower concentration compared to the co-located sub-slab soil vapor samples. Sub-slab soil vapor therefore may be a contributing

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

source of PCE detections in indoor air. PCE was detected in indoor air samples in the Residence at concentrations between 1.82 and 2.34 $\mu g/m^3$. These results are consistent with background sources throughout the United States. USEPA's indoor air background database reported a 50th percentile value of 0.7 $\mu g/m^3$, a 75th percentile value of 1.4 $\mu g/m^3$, and a 90th percentile value of 3.8 $\mu g/m^3$ (Dawson 2008). These results are slightly above the MADEP TV for PCE (1.4 $\mu g/m^3$), but based on the calculated AF it is likely that background sources of PCE (e.g., dry-cleaned clothes) are present in the Residence.

3.4 Residence Human Health Risk Evaluation

Preliminary human health risk calculations were performed using the June 2011 validated indoor air data and a combined data set (i.e., average indoor air concentrations) from the April 2011 and June 2011 sampling events. The Preliminary Human Health Risk Evaluation Report and supporting calculations can be found in Appendix E. The conclusions from that report are summarized below.

Potential risks from inhalation of constituents detected in indoor air were calculated assuming a homebound individual lives in the Residence for 24 hours per day, 350 days per year, for 30 years. For each constituent, the exposure point concentration in indoor air is equal to the average concentration of the two indoor air results from the current sampling round.

To evaluate potential risks over the initial (April 2011) and current (June 2011) sampling events, risks were calculated considering chemicals detected in indoor air from both sampling rounds. Data from April 21 and 22, 2011 were presented in the Indoor Air Quality and Vapor Intrusion Assessment: Report of Results submitted to USEPA on May 23, 2011 (ARCADIS 2011b). Any constituent that was detected in either the April or June sampling event in indoor air was included in the combined risk calculation. Risks were estimated using the average concentration from both sampling rounds. Risks associated with both data sets are referred to as "Combined Results" below.

The estimated total cancer risk associated with long term exposure to indoor air in the basement of the home from the June 2011 sampling round is $5x10^{-5}$, primarily due to the presence of 1,2-dichloroethane, chloroform, and naphthalene (69% of risk). Excluding 1,2-dichloroethane, chloroform, and naphthalene, all other chemical-specific risks, including those associated with background sources, are at or below a $5x10^{-6}$ risk level for the current sampling round. Estimated cancer risk from PCE is equal to $5x10^{-6}$.

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

8

The estimated total cancer risk associated with long term residential exposure to indoor air in the basement of the Residence using the combined data set is $3x10^{-5}$, primarily due to the presence of 1,2-dichloroethane, chloroform, and naphthalene (64% of risk). The majority of risk associated with 1,2-dichloroethane, chloroform, and naphthalene is likely from background sources. Excluding these three chemicals, all other chemical-specific risks, including those associated with PCE, are at or below a $5x10^{-6}$ risk level for the combined data set. Estimated cancer risk from PCE is equal to $5x10^{-6}$.

4. Summary and Conclusions

The potential carcinogenic risk level estimated for a resident exposed for 30 years to the low levels of PCE (from the June 2011 sampling event) at the Residence is 5x10⁻⁶. This represents a level of risk that is within USEPA's risk range for Superfund sites. The estimated total risk, including exposure to other constituents in the Residence originating from background sources is 5x10⁻⁵, primarily due to 1,2-dichloroethane, chloroform, and naphthalene. As noted above, estimated cancer risks for PCE are the same for this sampling event (June 2011) and the combined data results (5x10⁻⁶). This is also true for the overall risk calculations; the second sampling round risks and combined risks are equal to 5x10⁻⁵ and 3x10⁻⁵, respectively.

The low concentrations of PCE detected in the basement of the Residence are consistent with those typically measured in residences, as reported by USEPA and MADEP. Measured PCE concentrations from June 2011 are slightly above the MADEP TV of 1.4 $\mu g/m^3$, but based on the calculated AF, a background source is likely to be present.

5. Recommendations

The two rounds of sub-slab soil vapor and indoor air data collected in April and June 2011 confirm that risks to on-site residents are within USEPA's risk range for Superfund sites. Estimated risks from exposure to constituents detected in indoor air are due primarily to background sources from products used and stored in the Residence. Estimated risks from exposure to PCE remain at the low end of USEPA's risk range and are thought to be influenced by a background source. Based on these findings, no further action is recommended to address the vapor intrusion pathway at the Residence.

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

9

6. References

- ARCADIS. 2011a. Vapor Intrusion Assessment Work Plan: Off-Site Sub-slab and Indoor Air Evaluation, Wells G&H Superfund Site, Woburn, Massachusetts, January 7.
- ARCADIS. 2011b. Indoor Air Quality and Vapor Intrusion Assessment: Report of Results. Residence, Parcel 26/ 05/ 05 South, Wells G&H Superfund Site, Woburn, Massachusetts. April 2011.
- Dawson, Helen. 2008. Background Indoor Air Concentrations of Volatile Organic Compounds in North American Residences. Literature Review & Implications for Vapor Intrusion Assessment. Vapor Intrusion Workshop AEHS Spring 2008, San Diego, California.
- Magee, B., I. Penn, G. Logoni and S. Livio. 2008. Typical Levels of Tetrachlorethylene and Trichloroethylene in Residential Indoor Air. CONSOIL Conference. Milan, Italy.
- Massachusetts Department of Environmental Protection (MADEP). 2008. Indoor Air Threshold Values for the Evaluation of a Vapor Intrusion Pathway, Technical Update, Draft. June 26.
- Odabasi, M. 2008. Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-Containing Household Products. Environ. Sci. Technol. 42:1445-1451.
- The Johnson Company (JCO). 2010a. Indoor Air Quality and Vapor Intrusion Assessment Scope of Work, Revision 2, UniFirst Property, Wells G&H Superfund Property. March 25.
- JCO. 2010b. Quality Assurance Project Plan, Revision 1, Indoor Air Quality and Vapor Intrusion Assessment, UniFirst Property, Wells G&H Superfund Property. March 25.

Table 1. Residential Indoor and Ambient Air Data

Sample Name: Location: Date Collected:	Units	IA-4 Basement 6/17/2011	IA-5 Basement 6/17/2011	OA-1 Outdoor 6/17/2011
1,1,1-Trichloroethane	μg/m³	0.109 U	0.109 U	0.109 U
1,1,2-Trichloroethane	μg/m³	0.109 U	0.109 U	0.109 U
1,1-Dichloroethane	μg/m³	0.081 U	0.081 U	0.081 U
1,1-Dichloroethene	μg/m³	0.079 U	0.079 U	0.079 U
1,2,4-Trimethylbenzene	μg/m³	0.565	0.575	0.226
1,2-Dibromoethane	μg/m³	0.154 U	0.154 U	0.154 U
1,2-Dichloroethane	μg/m³	0.716	0.712	0.081 U
1,2-Dichloropropane	μg/m³	0.097	0.102	0.092 U
1,3-Butadiene	μg/m³	0.124 J	0.137 J	0.044 UJ
1,3-Dichlorobenzene	μg/m³	0.12 U	0.12 U	0.12 U
1,4-Dichlorobenzene	μg/m³	0.12 U	0.12 U	0.12 U
Benzene	μg/m³	0.585	0.543	0.249
Bromodichloromethane	μg/m³	0.161	0.154	0.134 U
Bromoform	μg/m³	0.207 U	0.207 U	0.207 U
Carbon Tetrachloride	μg/m³	0.491	0.484	0.472
Chlorobenzene	μg/m³	0.092 U	0.092 U	0.092 U
Chloroform	μg/m³	1.97	2	0.107
cis-1,2-Dichloroethene	μg/m³	0.079 U	0.079 U	0.079 U
Ethylbenzene	μg/m³	1.8	1.84	0.13
Isopropylbenzene	μg/m³	2.46 U	2.46 U	2.46 U
Methylene Chloride	μg/m³	1.74 U	1.74 U	2.76 U
Methyl tert-butyl ether	μg/m³	0.072 U	0.072 U	0.072 U
Naphthalene	μg/m³	0.351 J	0.383 J	0.304 J
Tetrachloroethene	μg/m³	1.82	2.34	0.136 U
Toluene	μg/m³	15.5	16.7	1.27
trans-1,2-Dichloroethene	μg/m³	0.079 U	0.079 U	0.079 U
trans-1,3-Dichloropropene	μg/m³	0.091 U	0.091 U	0.091 U
Trichloroethene	μg/m³	0.107 U	0.107 U	0.107 U
Vinyl Chloride	μg/m³	0.051 U	0.051 U	0.051 U
Xylenes (total)	μg/m³	3.7	3.71	0.491

Notes:

μg/m³ - Micrograms per cubic meter

U - Compound was not detected

IA - Indoor air sample

OA - Ambient air sample

J - Estimated concentration

8/17/2011 Page 1 of 1

Table 2. Residential Sub-slab Soil Vapor Data

Sample Name: Location: Date Collected:	Units	SS-4 Sub-Slab 6/17/2011	SS-5 Sub-Slab 6/17/2011
1,1,1-Trichloroethane	μg/m³	0.153 [0.147]	0.109 U
1,1,2-Trichloroethane	μg/m³	0.109 U [0.109 U]	0.109 U
1,1-Dichloroethane	μg/m³	0.081 U [0.081 U]	0.081 U
1,1-Dichloroethene	µg/m³	0.079 U [0.079 U]	0.079 U
1,2,4-Trimethylbenzene	μg/m³	0.359 [0.128]	0.16
1,2-Dibromoethane	μg/m³	0.154 U [0.154 U]	0.154 U
1,2-Dichloroethane	μg/m³	0.081 U [0.081 U]	0.081 U
1,2-Dichloropropane	μg/m³	0.092 U [0.092 U]	0.092 U
1,3-Butadiene	μg/m³	0.044 UJ [0.044 UJ]	0.044 UJ
1,3-Dichlorobenzene	μg/m³	0.12 U [0.12 U]	0.12 U
1,4-Dichlorobenzene	μg/m³	0.12 U [0.12 U]	0.12 U
Benzene	μg/m³	0.224 U [0.224 U]	0.224 U
Bromodichloromethane	μg/m³	0.134 U [0.134 U]	0.134 U
Bromoform	μg/m³	0.207 U [0.207 U]	0.207 U
Carbon Tetrachloride	μg/m³	0.157 [0.151]	0.33
Chlorobenzene	μg/m³	0.092 U [0.092 U]	0.092 U
Chloroform	μg/m³	0.469 [0.171]	0.30
cis-1,2-Dichloroethene	μg/m³	0.079 U [0.079 U]	0.079 U
Ethylbenzene	μg/m³	0.087 U [0.087 U]	0.087 U
Isopropylbenzene	μg/m³	2.46 U [2.46 U]	2.46 U
Methylene Chloride	μg/m³	1.74 U [1.74 U]	1.74 U
Methyl tert-butyl ether	μg/m³	0.072 U [0.072 U]	0.072 U
Naphthalene	μg/m³	0.419 J [0.262 UJ]	0.262 UJ
Tetrachloroethene	μg/m³	13.6 [14]	1.71
Toluene	μg/m³	0.584 U [0.316 U]	0.441 U
trans-1,2-Dichloroethene	μg/m³	0.079 U [0.079 U]	0.079 U
trans-1,3-Dichloropropene	μg/m³	0.091 U [0.091 U]	0.091 U
Trichloroethene	μg/m³	0.107 U [0.107 U]	0.107 U
Vinyl Chloride	μg/m³	0.051 U [0.051 U]	0.051 U
Xylenes (total)	μg/m³	0.261 U [0.261 U]	0.261 U

Notes:

 $\begin{array}{l} U\text{ - Compound was not detected} \\ \mu\text{g/m}^3\text{ - Micrograms per cubic meter} \\ \text{SS - Sub-slab soil vapor sample} \end{array}$

[0.109 U] - Duplicate results presented in brackets

J - Estimated concentration

8/17/2011 Page 1 of 1

LEGEND:

DOOR TO

BASEMENT

DOOR TO FIRST FLOOR

- \oplus SAMPLING LOCATION
- HOT WATER HEATER

NOTES:

- 1. ALL LOCATIONS ARE APPROXIMATE.
- 2. NOT TO SCALE.

UNIFIRST CORPORATION
WOBURN, MA
INDOOR AIR QUALITY AND VAPOR INTRUSION
ASSESSMENT: REPORT OF RESULTS

RESIDENCE SAMPLE LOCATIONS - JUNE 2011

DOOR TO

BASEMENT

KITCHEN

BATHROOM

FRONT

STEPS

CLOSET CLOSET

BATHROOM

⊕ \ A-4/SS-4

CLOSET

FRONT

STEPS

KITCHEN

 \oplus IA-5/SS-5

DOOR TO

FIRST FLOOR

FIGURE 1

Appendix A

Sampling Logs

A	ARCADIS	Indoor Air Sample Collection Log		
		Sample ID:	AA-570-1-06162011	
Client:	UniFirst	Outdoor/Indoor:	outdoor	
Project:	Wills GEH	Sample Intake Height:	나 하는데 가게 다 살은 이 나는데 돈을 가는 것을 받아 그렇다면 하는데 말이 하는 생각 때에 살려는 말라니 중심하다 다 했다.	
Location:	Woburn, MA	Tubing Information:		
Project#:	MA000989.0007.00023	Miscellaneous Equipment:		
Samplers:	M clacksman	Time On/Off:	0950	
Sample Point Location:	() pulled of	Subcontractor:		

Date	Time	Canister Vacuum (a) (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
6/16/2011	0950	-30'	31°F	58%	O-2mp	29.77	حسستست
6/17/2011	0902	-74	7701	65%	O. Suph	2984	
6/17/204	0452	~6.3°1					

⁽a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

Size (circle	1L 6Û
one):	
Canister ID:	995
Flow	11.0.1
Controller ID:	481
Notes:	

General Observations/Notes:

· Played Conster IN Save, location as Round One.	
- Constar Dalval of REDACTED	
- wind from West both 6/16 and 6/17	

A	ARCADIS	Indoor Air Sample Collection Log		
		Sample ID:	IA-50-4-06162011	
Client:	UniFirst	Outdoor/Indoor:	indoor	
Project:	Wells G &H	Sample Intake Height:	41	
Location:	Wobura, MA	Tubing Information:		
Project#:	MA000969,0002.0003	Miscellaneous Equipment:		
Samplers:	Wallsmen	Time On/Off:	1006	
Sample Point Location:	REDACTED Basewey New	Subcontractor:		

Uti	1144	Closer
-----	------	--------

Date	Time	Canister Vacuum (a) (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
80/16/2011	1006	-30"	71°F	65%	مسمسين	-29.77	
6/17/204	0907	-7.3"					
6/17/204	1001	-64"	75"	69%	0	29.86	

⁽a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

Size (circle one):	1L (6L)
Canister ID:	666
Flow	100
Controller ID:	192_
Notes:	

General Observations/Notes:

ARCADIS	Indoor Air Sample Collection Log		
	Sample ID:	IA-50-5-06/62011	
Client: () h F1/7+	Outdoor/Indoor:	indoor	
Project: Wells 6 &H	Sample Intake Height:	지역 하고 2 시 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	
Location: Wolvin, MA	Tubing Information:		
Project #: MACO 989, 007 0003	Miscellaneous Equipment:	[18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18] 15. (18]	
Samplers: M Walksman	Time On/Off:	1009	
Sample Point REDACTED Location: Basemut, New Cosch	Subcontractor:		

Date	Time	Canister Vacuum (a) (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
06/16/201	1009	-30"	7701=	65%	Б оруу жана жана жана жана жана жана жана жа	29.77	
6/(7/204	0910	-5.9"					
6/17/2011	1002	-5.1"	75°F	6.9%	0	29.86	

⁽a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

Size (circle one):	1L &L
Canister ID:	575
Flow Controller ID:	152
Notes:	

General Observations/Notes:

4	
1	

Subslab Soil Vapor Sample ARCADIS Collection Log Sample ID: **Boring** Client: **Equipment:** Project: Sealant **Tubing** Location: Information: Miscellaneous Project #: Equipment: Subcontractor: Samplers: Sample Point Equipment: busement, Hility Close Location: Sampling Moisture Depth: Content of Time and Date **Approximate** Purge Inlin @ Soul found of Installation: **Purge Volume:**

Instrument Readings:

sample Duy

Date *	Time	Canister Vacuum (a) (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
6/17/2011	1232	-29.6 24.9	77.0%=	75%	<u>ර</u>	29.85	
, ,	1250	-16 -16					
	1302	-G.4 -619					

(a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

	Sawalt	DUP	
Size (circle one):	1 L	(6L)	ر إ
Canister ID:	1658	748	\mathbb{T}^{μ}
Flow Controller ID:	073	391	
Notes:			1

Tracer Test Information (if applicable):

550617201

Initial Helium	a 1.5 p	
Shroud:	29%	
Final Helium	(, 0,	
Shroud:	66%	
Tracer Test	(ves)	No
Passed:		140
Notes:	Oppm, JP	Vrsl

General Observations/Notes:

 	" "	 	
•			

Approximating One-Well Volume (for purging):

When using 1¼-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

ARCADIS		Subslab Soil Vapor Sample Collection Log		
			55-50-5-06172011	
Client:	UniFirst	Boring Equipment:	NOW	
Project:	UniFirst Wells G&H	Sealant:	Lycharlic Conent	
Location:	Woburn, MA	Tubing Information:	7ef (sv	
Project #:	MADD 989.002.0003	Miscellaneous Equipment:	pust pump	
Samplers:	M. Wacksman	Subcontractor:	Now	
Sample Point Location:	REDACTED Buggment, NORTH Wall	Equipment:		
Sampling Depth:	Sincles below slab	Moisture Content of	Dry	
Time and Date of Installation:	4/20/2011	Approximate Purge Volume:	50m/ B	

Date	Time	Canister Vacuum (a) (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
6/17/2011	1258	-30 K	726°F	7506	0	29.85	
	1317	-14,8					
	1328	-6.2h					

⁽a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

Size (circle one):	1L (6L)
Canister ID:	1565
Flow Controller ID:	052
Notes:	

<u>Tracer Test Information (if applicable)</u>:

Initial Helium	c-/0/	
Shroud:	30/6	
Final Helium	6,01	
Shroud:	66%	
Tracer Test	Yes	No
Passed:		140
Notes:	Opporin parse	

General Observations/Notes:

Approximating One-Well Volume (for purging):

When using 1¼-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

Appendix B

Building Survey and Product Inventory Field Form

Attached garage? (Y/N)

THE JOHNSON COMPANY, INC. SOP-JCO-063-002 100 State Street, Suite 600 Montpelier, Vermont 05602 Page 1 of 4 DRAFT (802) 229-4600 Indoor Air Quality Building Survey Date: 6/14/2011 Sampler: M Walksma JCO #: Address: Contact Name: List of Current Occupants/Occupation: Age (if under 18) Sex (m/f) Occupation M M 3 **Building Construction Characteristics:** What type of building is it? (Circle appropriate responses) Single Family Multi-Family Commercial Industrial School Ranch 2-Family Raised Ranch (Dublex) Cape Condominium (# of units Colonial Split Level Other (specify) Mobile Home General description of building construction materials: Finished above. Basement Year built? Number of occupied stories:___ Has the building been weatherized with any of the following? (Circle all that apply) Insulation Storm windows Energy-efficient windows Other (specify)

Source: MaDEP, 2002, "Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430", Office of Research and Standards, Massachusetts Department of Environmental Protection, April, 2002.

Vehicle(s) present? (Y/N)

THE JOHNSON COMPANY, INC.

SOP-JCO-063-002

100 State Street, Suite 600
Montpelier, Vermont 05602
(902) 220 4600

Montpelier, Vermont 05 (802) 229-4600	5602	DRAFT		Page 2 of 4
What type of basemen	nt does the build	ing have? (Circl	e all that apply)	kinnes de antreadent skulde annociju septimum istalen o umrećenske redect (1864 and 1971) (1974 filipida 1976) (19
full basement	Crawlspace	Slab-on-grad	e Other (speci	fy)
What are the characte	ristics of the bas	ement? (Circle a	all that apply)	
Finished	Baser	ment Floor:	Foundation Walls:	Moisture:
Unfinished	Con	crete	Poured concrete	Wet
Partially finished (%)	Dirt		Block	Damp
	Othe	er (specify)	Field stone	Dry
Is a basement sump pr	resent? (Y/N) Λ	1-French d	Sump sealed to inc	door air? (Y/N)
Does the basement ha	ve any of the fol	lowing characte	אולי. ristics (e.g., preferential	vapor pathways) that might
permit soil vapor entr	y? (Circle all tha	t apply) کے	peted & Tited	
Cracks	Pine	/utility conduits	Other (speci	fv)
	_	diffity conduits		*J)
Foundation/sl	ab drainage		Sump pumps	
Heating and Ventilat	tion System(s) F	resent:		
What types of heating	system(s) are us	sed in this buildi	ng? (Circle all that appl	ly)
Hot air circula	ation Heat	pump Stear	n Radiation Woo	od stove
Other (specify) Air condition	er (central/winde	ow) Fireplace (w	ood/gas)
1	oud, Electr		•	- ,
What types of fuels ar			ıll that apply)	
Natural gas	Electric	Coal	Other (specify)	
Fuel oil	Wood	Solar	-	
What to war of war along	1			
	cai ventilation s	stems are prese	ent and/or currently open	rating in this building?
(Circle all that apply)				>
Central air cor		Mechanical fa		
Individual air	conditioning	Kitchen range	hood Air-to-air he	eat exchanger
Open window	s Other	(specify)		

Sources of Chemical Contaminants:

Source: MaDEP, 2002, "Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430", Office of Research and Standards, Massachusetts Department of Environmental Protection, April, 2002.

THE JOHNSON COMPANY, INC.

SOP-JCO-063-002

100 State Street, Suite 600 Montpelier, Vermont 05602 (802) 229-4600

DRAFT

Page 3 of 4

Potential VOC Source	Location of Source	Major Ingredients	Removed Prior to Air Sampling (Y/N/NA)
Paint or paint thinners			
Gas-powered equipment			
Gasoline storage cans			
Cleaning solvents			
Air fresheners	Basenart	*	1/05
Oven cleaners			
Carpet/ upholstery		C 0	
cleaners	Busement	(%)	Kes
Hairspray	Busenen	(X)	Yes
Nail polish/ remover	Busenen-		Yés
Bathroom cleaner	Basement		Ves
Appliance cleaner	Busenar	(%)	Ves
Furniture/ floor polish	Busement	(A)	145
Moth balls			
Fuel oil tank			
Wood stove			
Fireplace			
Perfume/ colognes			
Hobby supplies			
Scented potpourri, etc			
Brake cleaner			
Liquid Wrench			
Other			
Other			
Other			
(\mathcal{L})	See Product	Inventary.	
Do one or more smokers of	occupy this building on a	regular basis? NO	
Has anyone smoked in the	building in the last 48 ho	ours? (Y/N) NO	
Do the occupants frequent	ly have clothes dry-clean	ed? (Y/N)	
Any recent remodeling or			
Any obvious pressed wood	d d / 1d	d alcurred monoline montic	1-1 Charles and O (X/N)

Source: MaDEP, 2002, "Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430", Office of Research and Standards, Massachusetts Department of Environmental Protection, April, 2002.

Are there any new upholstery, drapes, carpets, or other textiles? ON) Carpet & Tile One Year aso

THE JOHNSON COMPANY, INC.

SOP-JCO-063-002

100 State Street, Suite 600 Montpelier, Vermont 05602	DRAFT	Page 4 of 4
(802) 229-4600		
Has the building been treated with a used? No F Recut		
Do any of the occupants apply pesti		den? If so, how often and what
chemicals are used?		
Outdoor Sources of Contamination		0
Is there any stationary emission sou	rce in the vicinity of the building?	Uni First
Are there any mobile emission sour	ces (e.g., highway; bus stop; high-	traffic area) in the vicinity of the
building?		
- High Way		
Weather Conditions During Samp	oling:	
Outside Temperature (°F): 75 Prevailing wind direction: West	7-80 1-	
Prevailing wind direction:	- to east	
Describe the general weather condit		
Was there any significant precipitat	<u>y</u>	
Was there any significant precipitat	on (0.1 inches) within 12 hours pro	eceding the sampling event? $\sqrt{\mathcal{O}}$
Type of ground cover (e.g., grass, p	avement, etc.) outside the building	: Pavenant
General Comments		
Is there any other information about	the structural features of this build	ding, the habits of its occupants or
potential sources of chemical contar	ninants to the indoor air that may b	be of importance in facilitating the
evaluation of the indoor air quality of	of the building?	
··· ·		

Source: MaDEP, 2002, "Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430", Office of Research and Standards, Massachusetts Department of Environmental Protection, April, 2002.

Chemical Inventory - 26/05/05 - South

Quantity Name	Ingredient(s)	Notes
asement		
Febreze	See MSDS	
Lysol Disinfectant Bathroom Spray	See MSDS	
Arm & Hammer Scrub Free	See MSDS	
Easy-off Oven Cleaner - Reckitt Banckiser	See MSDS	
Kiwi Leather Care	See MSDS	
Raid Flying Insect Spray	See MSDS	
Raid Ant & Roach	See MSDS	
Glade Carpet & Room Powder	See MSDS	
Oust Air Sanitizer	See MSDS	
Clorox Clean-up	See MSDS	
Rug Doctor Oxy-Steam Carpet Cleaner	See MSDS	
Soft Scrup	See MSDS	
Mr. Clean Spray	See MSDS	
Glass Plus	See MSDS	
Big Sexy Hair Spray	See MSDS	
Shout Gel	See MSDS	
isopropyl alcohol	See MSDS	
instant spray starch	See MSDS	
Comet Soft and Clear	See MSDS	
Fantastik Oxy Power Spray	See MSDS	
Pledge Dust and Allergy	See MSDS	
Framesi Volumizing Mousse Conditioner	See MSDS	
Rusk W8less Plus	See MSDS	
Tresemme Curl Care	See MSDS	

Appendix C

Data Validation Report

Phoenix Chemistry Services -

Aug. 8, 2011

Nadine Weinberg ARCADIS, U.S., Inc. 482 Congress Street, Suite 501 Portland, ME 04101

Reference #s: 2011-0705-001 & -002, and 2011-0715-001 & -002

Dear Nadine,

Phoenix Chemistry Services has submitted four reports on August 4 - 5, 2011 presenting the results of the data validation of Sample Delivery Group (SD) Nos. L1108879, L1108880, L1108884, and L1108885 from the Indoor Air Quality/Vapor Intrusion (IAQ/VI) assessment work at several residential and/or commercial properties in Woburn, MA. The indoor and outdoor air and sub-slab vapor samples in these SDGs were collected June 16 - 18, 2011. The laboratory analyses were performed by Alpha Analytical Laboratories, Inc. of Mansfield, MA.

The data packages and electronic deliverables were received on July 5 and 15, 2011. Two separate data packages for the canister certifications (SDG Nos. L1108049 and L1108435), and associated files L1108879.pdf, L1108880.pdf, L1108884.pdf, L1108885A.pdf, and L1108885B.pdf were received on June 16, 2011. The validation has been performed by Phoenix Chemistry Services according to the Tier III guidelines as defined by USEPA Region I, as presented in "Region I EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses", December, 1996. The EPA's National Functional Guidelines for Organic Data Review (EPA 540/R-99/008, October, 1999), the IAQ/VI Quality Assurance Project Plan (QAPP), and the Field-Laboratory Coordination Memorandum (Phoenix Chemistry Services, March 25, 2010) were also considered during the evaluation, and professional judgment was applied as necessary and appropriate. Data qualifiers have been applied in the final validation report as necessary and appropriate, in accordance with these guidelines.

The samples in these four data packages were collected as a single sampling round, and utilized shared quality control (QC) samples, including two trip blanks, four outdoor air samples, four field duplicate pairs, and two laboratory replicates. The trip blanks and laboratory replicates were each logged in and reported in at least two data packages to avoid collecting redundant QC samples, as requested by the field engineer. Only one set of results for these QC samples was retained in the project database to avoid duplications; the earliest laboratory identifier was selected to be validated and reported. The laboratory is maintaining the original reporting packages.

A reporting error was noted in the clean canister certification package SDG No. L1108435; an incorrect copy of the initial calibration was included in the raw data section, and the continuing calibration presented incorrect percent difference values, as the compounds were evaluated against the incorrect initial calibration. The laboratory quickly responded to the validator's request for a copy of the missing initial calibration, however, a revision of the data package with the corrected continuing calibration has not yet been received (the validator performed the checks manually after receiving the correct initial calibration). The laboratory should be reminded that this is still outstanding.

Thank you for this opportunity to provide data validation services to ARCADIS. If there are any questions or concerns about the material in this report, please do not hesitate to contact me for help and clarification.

Sincerely,

Deborah H. Gaynor, Ph.D.

Principal, Phoenix Chemistry Services

DATA VALIDATION

FOR

UniFirst-Woburn Vapor Intrusion Assessment Woburn, MA

ORGANIC ANALYSIS DATA Selected Volatiles in Air Samples

Sample Delivery Group (SDG) No. L1108880

Chemical Analyses Performed by:

Alpha Analytical Laboratories, Inc. 320 Forbes Blvd. Mansfield, MA 02048

FOR

ARCADIS U.S., Inc. 482 Congress Street, Suite 501 Portland, ME 04101

Data Validation Report by:

Phoenix Chemistry Services 126 Covered Bridge Rd. N. Ferrisburg, VT 05473 (802) 233-2473 Aug. 4, 2011

EXECUTIVE SUMMARY

Phoenix Chemistry Services (Phoenix) has completed the validation of the Method TO-15 Selected Ion Monitoring (SIM) volatiles in air analysis data prepared by Alpha Analytical Laboratories of Mansfield, MA, for 5 air samples from a residential property in Woburn, MA. The laboratory reported the data under Sample Delivery Group (SDG) No. L1108880, which was submitted as a single data package received by Phoenix on July 4, 2011, and includes the following samples:

Sample ID	Laboratory ID
IA-5O-4-06162011	L1108880-02
IA-5O-5-06162011	L1108880-03
SS-5O-4-06162011	L1108880-04
DUPSS06172011	L1108880-05
SS-5O-5-06162011	L1108880-06

A cross-reference table of sample IDs was provided in the data package. A separate data package, SDG No. L1108049, containing the supporting documentation (clean can certifications) for the preparation and analysis of the sampling canisters, and a file (L1108880.pdf) containing the raw data for the vacuum check upon receipt and the flow controller rate checks, were also submitted on June 16 and July 4, 2011, respectively.

The samples in this data set represent the indoor air and the sub-slab soil vapor samples (matched to the indoor sampling locations) collected from June 16 to 17, 2011 in Woburn, MA inside a residential building; a trip blank and an ambient air sample collected outdoors at this sample location on June 16, 2011 were reported separately (SDG No. L1108879) but will be discussed in this report. All samples were kept in the engineer's custody after sampling until hand-delivered by laboratory courier to the laboratory on June 18, 2011.

Findings of the validation effort resulted in the following qualifications of sample results:

- Results for naphthalene and 1,3-butadiene in all samples were qualified as estimated (J, UJ).
- Positive results greater than the sample-specific (adjusted) quantitation limit but less than the action limit (at twice the detected concentration) for methylene chloride in samples in the outdoor air sample submitted separately in SDG No. L1108879, and for toluene in samples SS-50-4-06172011, DUPSS06172011, and SS-50-5-06172011 were qualified as less than the reported value (U).
- The laboratory appropriately applied "J" qualifiers to the CLP-like sample Form 1s when the concentration of an analyte was less than the sample-specific QL for the analytes naphthalene, 1,2-dibromoethane, and bromodichloromethane in the TO-15 SIM analysis. The validator did not remove these qualifiers; however, no results below the QL were detected for any samples in this sample set.

The Overall Evaluation of Data (Section XVI) summarizes the validation results. The validation findings and conclusions for each analytical parameter are detailed in the remaining sections of this report.

Documentation problems observed in the data package are described in Section XVII.

This validation report shall be considered <u>part of the data package</u> for all future distributions of TO - 15 SIM (volatiles in air) analysis data for SDG No. L1108880.

INTRODUCTION

Analyses of selected volatiles in air samples were performed according to Method TO-15, as modified for Selected Ion Monitoring (SIM) in the laboratory standard operating procedure (SOP) No. A-001, and in accordance with requirements in the Quality Assurance Project Plan (QAPP) for Indoor Air Quality and Vapor Intrusion Assessment, Rev. 2, March, 2010. The target compound list was limited to the compounds listed in Form K of the QAPP, and reporting limits are as specified there.

Tentative identification of non-target analyte peaks (i.e., tentatively identified compounds, or TICs) was not requested for these analyses.

Phoenix's validation was performed in conformance with Tier III guidelines as defined by USEPA Region I. Data qualifiers are applied as necessary and appropriate. To the extent possible, the data were evaluated in accordance with the "Region I EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses", December, 1996. EPA's National Functional Guidelines for Organic Data Review (EPA 540/R-94/012, 2/94) and the QAPP were also considered during the evaluation, and professional judgment was applied as necessary and appropriate.

The data validation process evaluates data on a technical basis for chemical analyses conducted under the USEPA Contract Laboratory Program (CLP) or other well-defined methods. Contract compliance is evaluated only in specific situations. Issues pertaining to contractual compliance are noted where applicable. It is assumed that the data package is presented in accordance with the CLP requirements. It is also assumed that the data package represents the best efforts of the laboratory and has already been subjected to adequate and sufficient quality review prior to submission for validation.

Results of sample analyses are reported by the laboratory as either qualified or unqualified; various qualifier codes are used by the laboratory to denote specific information regarding the analytical results. During the validation process, laboratory data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data validator. Raw data is examined in detail to check calculations, compound identification, and/or transcription errors. Validated results are either qualified or unqualified; if results are unqualified, this means that the reported values may be used without reservation. Final validated results are annotated with the following codes, as defined in the EPA Region I Functional Guidelines:

- U The analyte was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for sample specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J The associated numerical value is an estimated quantity.
- UJ The analyte was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.
- R The data are unusable (analyte may or may not be present). Resampling and reanalysis is necessary for verification. The R replaces the numerical value or sample quantitation limit.

In some instances (e.g., a dilution) a result may be indicated as "rejected" to avoid confusion when a more quantitatively accurate result is available.

EB, TB, BB - An analyte that was identified in an aqueous equipment (field) blank, trip blank, or bottle blank that was used to assess field contamination associated with soil/sediment samples. These qualifiers are to be applied to soil/sediment sample results only.

These codes are assigned during the validation process and are based on the data review of the results. They are recorded in the "Validator_Qualifier" column, and are also found with the validated laboratory-applied qualifiers in the "Qualifier" column in the electronic spreadsheet contained in Attachment A.

All data users should note two facts. First, the "R" qualifier means that the laboratory-reported value is completely unusable. The analysis is invalid due to significant quality control problems, and provides <u>no</u> information as to whether the compound is present or not. Rejected values should not appear on data tables because they have no useful purpose under any circumstances. Second, no analyte concentration is guaranteed to be accurate even if all associated quality control is acceptable. While strict quality control conformance provides well-defined confidence in the reported results, any analytical result will always contain some error.

The user is also cautioned that the validation effort is based on the materials provided by the laboratory. Software manipulation, resulting in misleading raw data printouts, cannot be routinely detected during validation; unless otherwise stated in the report, these kinds of issues are outside the scope of this review.

Detailed Findings of Measurement Error Associated with the Analytical Analysis

I. Sample Integrity

The indoor air samples for volatiles analysis were collected over a 24-hour period from June 16 to 17, 2011, and the matching sub-slab (soil vapor) samples were collected at mid-day on June 17, 2011 for a 30-minute period. The property is located in Woburn, MA. All analyses were performed within eleven (11) days after sample collection, which is within the 30 day holding time defined in Method TO-15.

The canisters were delivered by laboratory courier to the field sampler's possession and after sampling the canisters were hand-delivered by laboratory courier to the laboratory three days after collection ended; the canisters were kept in the field engineer's office during the intervening days. A separate data package, SDG No. L1108049, was also submitted (on June 16, 2011), containing the supporting documentation (clean can certification) for the preparation and pre-sampling cleanliness check analysis of the canisters; the raw data for the vacuum and flow controller checks, as documented in the file L1108880.pdf was submitted on June 16, 2011.

The Chain of Custody (COC) and the Canister and Flow Controller Information records show that the sample canisters were collected and transported according to method specifications.

All canisters submitted to the field for use met all applicable method requirements. Based on acceptable sampling equipment conditions at receipt, sample integrity was deemed acceptable for all samples.

Field log books containing records of height of canister intake, barometric pressure, and ambient temperature at sampling locations were not submitted for review as part of this validation effort.

II. GC/MS Instrument Performance Check (Tuning)

The samples for volatiles in air analyses from SDG No. L1108880 were analyzed on a single GC/MS system identified as instrument Airlab7. The tuning of this instrument was demonstrated with analysis of 4-bromofluorobenzene (BFB); tunes were analyzed for each 24-hour period during which the samples or associated standards were analyzed. Both BFB tunes were correctly calculated, within acceptance limits, and are reported accurately on the Form 5 summaries in the data package.

III. Initial Calibration (IC)

One IC (6/25/11) was performed on instrument Airlab7 in support of the TO-15 SIM sample analyses. The IC was performed at ten concentration levels (0.02, 0.04, 0.1, 0.2, 0.5, 1.0, 2.5, 5.0, 10, and 50 part per billion by volume [ppbv]), except that the 0.02 ppbv standard was not used for calibration of naphthalene. It was noted that a standard at 20 ppbv was also analyzed and included in the data package, but was not used in the instrument calibration. Documentation of all individual IC standards was present in the data package and relative response factor (RRF) as well as percent relative standard deviation (%RSD) values were correctly calculated and accurately reported on the Form 6 summary.

Manual integrations for some target analytes, internal standards, or surrogate standards were performed in some standards and samples in this data set. The before and after ion chromatograms, the reason for the manual integration, and the analyst's initials and date were printed for each manual integration.

All average RRF values were above the 0.05 minimum criterion, and all %RSDs were below the maximum limit (30%) specified by Region I, with the exception that naphthalene exhibited a 37.3 %RSD.

An Independent Calibration Verification (ICV) sample analysis at 20 ppbv was analyzed on 6/27/11. All spiked analytes were recovered within 70 - 130 % recovery of expected values in the ICV analysis, with the exception of 1,3-butadiene, which was recovered at -41.7 % recovery.

Since the reporting limit for naphthalene is set above the lowest standard used in the calibration, no actions are necessary on the basis of the modification of the initial calibration range for this compound. On the basis of the unacceptably high %RSD value in the associated IC, results for naphthalene in all samples were qualified as estimated (J, UJ). On the basis of the unacceptably low recovery in the associated ICV analysis, results for 1,3-butadiene in all samples were qualified as estimated (UJ).

IV. Continuing Calibration (CC)

One continuing calibration (CC) standard was reported in support of the TO-15 SIM sample analyses reported in this data package; this analysis is also reported as the ICV and as the laboratory control sample analysis for this analytical window. Since this is an independent standard, this is acceptable, although redundant. Sample results were properly reported using the average RRF of the calibration curve for quantitation. Documentation of the standard analysis was present, and RRF as well as percent difference (%D) values were reported on the Form 7 summary within the data package. All RRF values were above the 0.05 minimum criterion, and all %D values were below the maximum limit (25%) specified by Region 1, with the exception of 1,3-butadiene, which exhibited a -41.7 %D.

It should be noted that a positive % D value (the CC response factor is <u>less than</u> the IC response factor) will result in a low bias for positive detects, and a negative % D will result in a high bias for positive detects.

Since results for 1,3-butadiene in all samples were previously qualified for this analysis on the basis of ICV criteria, no further qualifications were applied.

V. Blanks

Results for one air-matrix laboratory method blank (MB) were reported in association with the TO-15 SIM sample analyses. No target compounds were found in the MB.

One trip blank (TB) identified as TB06172011, which was used as a field blank, was reported in a separate data package (SDG No. L1108879). No target compounds were found in the TB, with the exceptions of methylene chloride (9.20 ppbv), and toluene (0.094 ppbv), which are both above their respective quantitation limits (0.50 and 0.050 ppbv).

Neither a trip blank nor a field blank is required for Method TO-15.

On the basis of field contamination and professional judgment, positive results greater than the sample-specific (adjusted) quantitation limit but less than the action limit (at twice the detected concentration) for methylene chloride in the outdoor air sample submitted separately in SDG No. L1108879, and for toluene in samples SS-50-4-06172011, DUPSS06172011, and SS-50-5-06172011 were qualified as less than the reported value (U).

VI. Surrogate Compounds

No surrogate compounds are used in these methods.

VII. Internal Standards (IS)

All IS areas and retention times (RT) were within the established QC limits for all reported sample analyses in this data package.

VIII. Laboratory Duplicates

A matrix spike/matrix spike duplicate (MS/MSD) analysis is not used in this method. A laboratory duplicate analysis of a field sample (matrix duplicate) analysis is also not required but was performed per laboratory protocols. A laboratory duplicate was selected from the samples collected during the same sampling set on June 16-17, 2011, and reported in SDG No. L1108879. Relative percent difference (RPD) values were reported on a Form 3 summary within that data package.

Precision in the laboratory duplicate analyses (6.8 - 11.5 % RPD) was acceptable (less than 30 % RPD, for all analytes greater than five times the reporting limit) on the basis of professional judgment.

IX. Field Duplicates

One field duplicate pair was reported in this sample set. Sample DUPSS06162011 was identified as the field duplicate of sample SS-5O-4-06162011.

Relative percent difference (RPD) values for compounds detected at greater than five times the quantitation limit in at least one member of a field duplicate pair must be less than 25 %RPD as per the QAPP. Precision in the field duplicate pair for naphthalene, the only detected analyte meeting threshold criteria, was acceptable (2.9 %RPD).

X. Sensitivity Check

An MDL study for the TO-15 SIM method was analyzed by the laboratory on May 7, 2009, and the most recent verification study was performed between February 3 and 4, 2010. All target analytes in the

statistical study had calculated MDLs below the method quantitation limits (QLs), and demonstrated acceptable ratios (at least 3:1) of the QL to the MDL. The QLs are also supported by the low concentration standard (at 0.020 ppbv) in the initial calibration.

Project objectives required a low reporting limit (RL) for naphthalene, and in order to achieve project objectives for detection limits, the analytes 1,2-dibromoethane (EDB), bromodichloromethane, and naphthalene were evaluated by the laboratory down to one-half the RL; concentrations between one-half the RL and the RL were reported with a "J" qualifier to indicate that this was an estimated concentration on the Form 1 summaries; results below the QL were only detected for naphthalene in this sample set.

On the basis of acceptable sensitivity and accuracy, as demonstrated by the MDL study and supported by the initial calibration, all results for the TO-15 SIM method (detects and non-detects) not qualified for other reasons are deemed acceptable as reported.

XI. Performance Evaluation Samples (PES)/Accuracy Check

One zero blind PE samples (commonly known as a laboratory control sample, LCS) was prepared and analyzed by the laboratory in support of the TO-15 SIM sample analyses; this analysis was also reported as the ICV and as the CC standard analysis for this data set. All target analytes were spiked into the QC samples at 20 ppbv. Percent recoveries (%R) were correctly calculated for the spiked compounds, accurately reported on the Form 3 summary in the data package, and were within the laboratory established QC limits (70 - 130 %R) for all target analytes, with the exception (previously noted) of 1,3-butadiene, which was recvored at -41.7 %. No spiked duplicate analyses were performed for either method, so laboratory precision was not evaluated using spiked analyses.

No external single-blind PES sample for either method was required or submitted with the samples in this data set.

Since all samples in this data set were previously qualiifed for the unacceptably low recovery of 1,3 – butadiene in this analysis (as an ICV), no further qualifications were applied.

XII. Target Compound Identification

Reported target compounds were correctly identified for all samples in this data set.

XIII. Compound Quantitation and Reported Quantitation Limits

Target compound quantitation and practical quantitation limits (PQLs) were accurately reported on the Form 1 summaries. Results below the RL are not reported by the laboratory for this method. However, at the client's request, positive results for naphthalene, bromodichloromethane, and 1,2-dibromoethane (EDB) were evaluated down to one-half the RL, and reported with a "J" qualifier by the laboratory on the Form 1s.

One compound was reported with reporting limits slightly higher than specified in the QAPP. Total xylenes were reported with a quantitation limit of 0.261 ug/m³. No qualifications were deemed necessary on

the basis of the RL slightly above that specified in the QAPP for total xylenes, since this concentration is still well below the risk screening level.

The laboratory appropriately applied "J" qualifiers to the CLP-like sample Form 1s when the concentration of an analyte was less than the sample-specific QL for the analytes naphthalene, 1,2-dibromoethane, and bromodichloromethane in the TO-15 SIM analysis. The validator did not remove these qualifiers (no results below the QL were detected for any samples in this sample set).

The values that the validator has judged to be acceptable are presented on the electronic deliverable generated from the project database (Attachment A). Qualifiers applied by the validator during the validation effort have been listed on the electronic spreadsheet in an additional column labeled "Validator_Qualifier". The column labeled "Qualifier" contains both qualifiers applied by the laboratory and those applied by the validator; all qualifiers in this column have been accepted or changed during the validation effort. The column labeled "PreValidationFlag", which is generated by the database utility, also indicates which qualifiers were changed by the validator. Sample-specific quantitation limits may be found on the Form 1 for each sample or in the electronic deliverable (Attachment A, column "ReportingLimit").

The Form 1s submitted in the data package present results in units of ug/m³ as well as in ppbv. Results are also presented almost entirely in units of ug/m³ in the electronic data deliverable (EDD). Both the forms and the EDD were examined during the data validation process.

All positive results are listed on the electronic data deliverable, whether or not the value or qualifier was changed as a result of the validation. All non-detected results are listed on the electronic data deliverable with a Qualifier of "U" or "UJ"; these are also found as less-than (<) values in the "TextResult" column. If the reported result value was changed during the validation effort from a positive result to a value representing a concentration not detected at or below, the value representing the new reporting limit is reported as the Result with a Validator Qualifier of "U" or "UJ" and a "<" sign in the "TextResult" column.

XIV. Tentatively Identified Compounds (TICs)

Evaluation of unidentified, non-target analyte peaks was not requested or performed for these samples.

XV. System Performance

The analytical system appears to have been working acceptably, based on instrument printouts and spectral quality.

XVI. Overall Evaluation of Data

Findings of the validation effort resulted in the following qualifications:

• On the basis of the unacceptably high %RSD value in the associated IC, results for naphthalene in all samples were qualified as estimated (J, UJ).

- On the basis of the unacceptably low recovery in the associated ICV analysis, results for 1,3-butadiene in all samples were qualified as estimated (UJ).
- On the basis of field contamination and professional judgment, positive results greater than the sample-specific (adjusted) quantitation limit but less than the action limit (at twice the detected concentration) for methylene chloride in the outdoor air sample submitted separately in SDG No. L1108879, and for toluene in samples SS-50-4-06172011, DUPSS06172011, and SS-50-5-06172011 were qualified as less than the reported value (U).
- The laboratory appropriately applied "J" qualifiers to the CLP-like sample Form 1s when the concentration of an analyte was less than the sample-specific QL for the analytes naphthalene, 1,2-dibromoethane, and bromodichloromethane in the TO-15 SIM analysis. The validator did not remove these qualifiers; however, no results below the QL were detected for any samples in this sample set.

XVII. Documentation

The required records for canister cleanliness were submitted as a separate data package, SDG No. L1108049, and all required records were properly included with this data package. Canister cleanliness and auxiliary equipment status was acceptable upon release from the laboratory, and appropriate checks and actions were performed as required upon sample and equipment receipt.

The chain of custody (COC) records were present and accurately completed for all reported samples.

Data presentation was acceptable, with the following observation:

• One compound was reported with reporting limits slightly higher than specified in the QAPP. Total xylenes were reported with a quantitation limit of 0.261 ug/m³.

This validation report should be considered <u>part of the data package</u> for all future distributions of the TO-15 SIM (volatiles in air) analysis data for SDG No. L1108880.

ATTACHMENT A

ELECTRONIC DELIVERABLE (EDD)
SDG No. L1108880
Selected Volatiles in Air Samples
(submitted electronically)

Appendix D

Laboratory Analytical Data Package

ANALYTICAL REPORT

Lab Number: L1108880

Client: Arcadis G&M, Inc.

482 Congress Street

Suite 501

Portland, ME 04101

ATTN: Nadine Weinberg Phone: (207) 828-0046

Project Name: UNIFIRST WELLS G&H

Project Number: MA000989.0002.00003

Report Date: 08/05/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1108880-01	AA-57O-1-06162011	WOBURN, MA	06/17/11 09:52
L1108880-02	IA-5O-4-06162011	WOBURN, MA	06/17/11 10:01
L1108880-03	IA-5O-5-06162011	WOBURN, MA	06/17/11 10:02
L1108880-04	SS-5O-4-06172011	WOBURN, MA	06/17/11 13:02
L1108880-05	DUPSS06172011	WOBURN, MA	06/17/11 00:00
L1108880-06	SS-5O-5-06172011	WOBURN, MA	06/17/11 13:28
L1108880-07	TB06172011	WOBURN, MA	06/17/11 00:00

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

* •		

Report Submission

This report replaces the report issued on July 1, 2011. The client sample identifications for L1108880-01 through L1108880-04 and L1108880-06 have been amended.

The canister certification results are provided as an addendum.

For additional information, please contact Client Services at 800-624-9220.

L1108880-03 The RPD of the pre- and post-flow controller calibration check (29% RPD) was outside acceptable limits (< or = 20% RPD).

Volatile Organics in Air (SIM)

1,2-Dibromoethane, Bromodichloromethane and Naphthalene were evaluated to 1/2 the RL and are J qualified if the concentration is below the quantitation limit (RDL), but greater than or equal to 1/2 the RDL. Values are

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

Case Narrative (continued)

estimated.

The WG475607-3 LCS recovery for 1,3-Butadiene (142%) is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

William Kathleen O'Brien

Title: Technical Director/Representative Date: 08/05/11

AIR

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

SAMPLE RESULTS

Lab ID: L1108880-01

Client ID: AA-57O-1-06162011 Sample Location: WOBURN, MA

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/27/11 21:42

Analyst: AR

Date Collected: 06/17/11 09:52

Date Received: 06/17/11

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	I - Mansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	0.046	0.020	0.020	0.226	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	0.078	0.070	0.070	0.249	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	0.075	0.020	0.020	0.472	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	0.022	0.020	0.020	0.107	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	0.030	0.020	0.020	0.130	0.087	0.087		1
Methylene chloride	0.794	0.500	0.500	2.76	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	0.058	0.050	0.025	0.304	0.262	0.131		1
Xylenes, Total	0.113	0.060	0.060	0.491	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.00003

Lab Number:

L1108880

Report Date:

08/05/11

SAMPLE RESULTS

Lab ID: L1108880-01

Client ID: AA-57O-1-06162011 Sample Location: WOBURN, MA Date Collected:

06/17/11 09:52

Date Received:

06/17/11

Field Prep:

Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	· Mansfield Lab							
Tetrachloroethene	ND	0.020	0.020	ND	0.136	0.136		1
Toluene	0.336	0.050	0.050	1.27	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	74		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	83		60-140

 Project Name:
 UNIFIRST WELLS G&H
 Lab Number:
 L1108880

 Project Number:
 MA000989.0002.00003
 Report Date:
 08/05/11

SAMPLE RESULTS

Lab ID: Date Collected: 06/17/11 10:01

Client ID: IA-5O-4-06162011 Date Received: 06/17/11 Sample Location: WOBURN, MA Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/28/11 00:34

Analyst: AR

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Mansfield Lab							
ND	0.020	0.020	ND	0.109	0.109		1
ND	0.020	0.020	ND	0.109	0.109		1
ND	0.020	0.020	ND	0.081	0.081		1
ND	0.020	0.020	ND	0.079	0.079		1
0.115	0.020	0.020	0.565	0.098	0.098		1
ND	0.020	0.010	ND	0.154	0.077		1
0.177	0.020	0.020	0.716	0.081	0.081		1
0.021	0.020	0.020	0.097	0.092	0.092		1
0.056	0.020	0.020	0.124	0.044	0.044		1
ND	0.020	0.020	ND	0.120	0.120		1
ND	0.020	0.020	ND	0.120	0.120		1
0.183	0.070	0.070	0.585	0.224	0.224		1
0.024	0.020	0.010	0.161	0.134	0.067		1
ND	0.020	0.020	ND	0.207	0.207		1
0.078	0.020	0.020	0.491	0.126	0.126		1
ND	0.020	0.020	ND	0.092	0.092		1
0.404	0.020	0.020	1.97	0.098	0.098		1
ND	0.020	0.020	ND	0.079	0.079		1
0.415	0.020	0.020	1.80	0.087	0.087		1
ND	0.500	0.500	ND	1.74	1.74		1
ND	0.020	0.020	ND	0.072	0.072		1
0.067	0.050	0.025	0.351	0.262	0.131		1
0.851	0.060	0.060	3.70	0.261	0.261		1
	Mansfield Lab ND ND ND ND 0.115 ND 0.177 0.021 0.056 ND ND 0.183 0.024 ND 0.078 ND 0.404 ND 0.404 ND 0.415 ND ND 0.067	Results RL Mansfield Lab ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 0.020 0.020 0.020 ND 0.020 0.020 0.020 0.020 0.020 0.020 ND 0.020 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 ND 0.050 ND <td>Results RL MDL Mansfield Lab ND 0.020 0.020 ND 0.020 0.010 0.177 0.020 0.020 0.021 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 0.183 0.070 0.070 0.024 0.020 0.010 ND 0.020 0.020 ND 0.500 0.500 ND 0.500 0.500 ND 0.020</td> <td>Results RL MDL Results Mansfield Lab ND 0.020 0.020 ND ND 0.020 0.020 ND ND 0.020 0.020 ND ND 0.020 0.020 ND 0.115 0.020 0.020 0.565 ND 0.020 0.010 ND 0.177 0.020 0.020 0.0716 0.021 0.020 0.020 0.097 0.056 0.020 0.020 0.097 0.056 0.020 0.020 ND ND 0.020 0.020 ND ND 0.020 0.020 ND 0.183 0.070 0.0585 0.024 0.020 0.010 0.161 ND 0.020 0.020 ND 0.078 0.020 0.020 ND 0.404 0.020 0.020 ND 0.415 0.020 0.020 ND<!--</td--><td>Results RL MDL Results RL Mansfield Lab ND 0.020 ND 0.109 ND 0.020 0.020 ND 0.109 ND 0.020 0.020 ND 0.091 ND 0.020 0.020 ND 0.079 0.115 0.020 0.020 0.565 0.098 ND 0.020 0.010 ND 0.154 0.177 0.020 0.020 0.716 0.081 0.021 0.020 0.020 0.097 0.092 0.056 0.020 0.020 0.124 0.044 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 0.183 0.070 0.0585 0.224 0.024 0.020 0.010 0.161 0.134 ND 0.020 0.020 ND</td><td>Results RL MDL Results RL MDL Mansfield Lab ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.019 0.019 ND 0.020 0.020 ND 0.079 0.079 0.115 0.020 0.020 0.565 0.098 0.098 ND 0.020 0.020 0.565 0.098 0.098 ND 0.020 0.020 0.716 0.081 0.081 0.021 0.020 0.020 0.071 0.092 0.092 0.056 0.020 0.020 0.097 0.092 0.092 0.056 0.020 0.020 ND 0.120 0.120 ND 0.020 0.020 ND 0.120 0.120 ND 0.020 0.010 0.161 0.134 0.067 <td< td=""><td>Results RL MDL Results RL MDL Qualifier Wansfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 0.079 0.115 0.020 0.020 0.565 0.098 0.098 0.098 ND 0.020 0.010 ND 0.154 0.077 0.071 0.177 0.020 0.020 0.716 0.081 0.081 0.081 0.021 0.020 0.020 0.097 0.092 0.092 0.092 0.056 0.020 0.020 0.124 0.044 0.044 0.044 ND 0.020 0.020 ND 0.120 0.120 0.120 0.183 0.070 0.585 0.22</td></td<></td></td>	Results RL MDL Mansfield Lab ND 0.020 0.020 ND 0.020 0.010 0.177 0.020 0.020 0.021 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 0.183 0.070 0.070 0.024 0.020 0.010 ND 0.020 0.020 ND 0.500 0.500 ND 0.500 0.500 ND 0.020	Results RL MDL Results Mansfield Lab ND 0.020 0.020 ND ND 0.020 0.020 ND ND 0.020 0.020 ND ND 0.020 0.020 ND 0.115 0.020 0.020 0.565 ND 0.020 0.010 ND 0.177 0.020 0.020 0.0716 0.021 0.020 0.020 0.097 0.056 0.020 0.020 0.097 0.056 0.020 0.020 ND ND 0.020 0.020 ND ND 0.020 0.020 ND 0.183 0.070 0.0585 0.024 0.020 0.010 0.161 ND 0.020 0.020 ND 0.078 0.020 0.020 ND 0.404 0.020 0.020 ND 0.415 0.020 0.020 ND </td <td>Results RL MDL Results RL Mansfield Lab ND 0.020 ND 0.109 ND 0.020 0.020 ND 0.109 ND 0.020 0.020 ND 0.091 ND 0.020 0.020 ND 0.079 0.115 0.020 0.020 0.565 0.098 ND 0.020 0.010 ND 0.154 0.177 0.020 0.020 0.716 0.081 0.021 0.020 0.020 0.097 0.092 0.056 0.020 0.020 0.124 0.044 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 0.183 0.070 0.0585 0.224 0.024 0.020 0.010 0.161 0.134 ND 0.020 0.020 ND</td> <td>Results RL MDL Results RL MDL Mansfield Lab ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.019 0.019 ND 0.020 0.020 ND 0.079 0.079 0.115 0.020 0.020 0.565 0.098 0.098 ND 0.020 0.020 0.565 0.098 0.098 ND 0.020 0.020 0.716 0.081 0.081 0.021 0.020 0.020 0.071 0.092 0.092 0.056 0.020 0.020 0.097 0.092 0.092 0.056 0.020 0.020 ND 0.120 0.120 ND 0.020 0.020 ND 0.120 0.120 ND 0.020 0.010 0.161 0.134 0.067 <td< td=""><td>Results RL MDL Results RL MDL Qualifier Wansfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 0.079 0.115 0.020 0.020 0.565 0.098 0.098 0.098 ND 0.020 0.010 ND 0.154 0.077 0.071 0.177 0.020 0.020 0.716 0.081 0.081 0.081 0.021 0.020 0.020 0.097 0.092 0.092 0.092 0.056 0.020 0.020 0.124 0.044 0.044 0.044 ND 0.020 0.020 ND 0.120 0.120 0.120 0.183 0.070 0.585 0.22</td></td<></td>	Results RL MDL Results RL Mansfield Lab ND 0.020 ND 0.109 ND 0.020 0.020 ND 0.109 ND 0.020 0.020 ND 0.091 ND 0.020 0.020 ND 0.079 0.115 0.020 0.020 0.565 0.098 ND 0.020 0.010 ND 0.154 0.177 0.020 0.020 0.716 0.081 0.021 0.020 0.020 0.097 0.092 0.056 0.020 0.020 0.124 0.044 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 0.183 0.070 0.0585 0.224 0.024 0.020 0.010 0.161 0.134 ND 0.020 0.020 ND	Results RL MDL Results RL MDL Mansfield Lab ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.019 0.019 ND 0.020 0.020 ND 0.079 0.079 0.115 0.020 0.020 0.565 0.098 0.098 ND 0.020 0.020 0.565 0.098 0.098 ND 0.020 0.020 0.716 0.081 0.081 0.021 0.020 0.020 0.071 0.092 0.092 0.056 0.020 0.020 0.097 0.092 0.092 0.056 0.020 0.020 ND 0.120 0.120 ND 0.020 0.020 ND 0.120 0.120 ND 0.020 0.010 0.161 0.134 0.067 <td< td=""><td>Results RL MDL Results RL MDL Qualifier Wansfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 0.079 0.115 0.020 0.020 0.565 0.098 0.098 0.098 ND 0.020 0.010 ND 0.154 0.077 0.071 0.177 0.020 0.020 0.716 0.081 0.081 0.081 0.021 0.020 0.020 0.097 0.092 0.092 0.092 0.056 0.020 0.020 0.124 0.044 0.044 0.044 ND 0.020 0.020 ND 0.120 0.120 0.120 0.183 0.070 0.585 0.22</td></td<>	Results RL MDL Results RL MDL Qualifier Wansfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 0.079 0.115 0.020 0.020 0.565 0.098 0.098 0.098 ND 0.020 0.010 ND 0.154 0.077 0.071 0.177 0.020 0.020 0.716 0.081 0.081 0.081 0.021 0.020 0.020 0.097 0.092 0.092 0.092 0.056 0.020 0.020 0.124 0.044 0.044 0.044 ND 0.020 0.020 ND 0.120 0.120 0.120 0.183 0.070 0.585 0.22

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.00003

Lab Number:

L1108880

Report Date: 08/05/11

SAMPLE RESULTS

Lab ID: L1108880-02
Client ID: IA-5O-4-06162011
Sample Location: WOBURN, MA

Date Collected:

06/17/11 10:01

Date Received:

06/17/11

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Tetrachloroethene	0.269	0.020	0.020	1.82	0.136	0.136		1
Toluene	4.12	0.050	0.050	15.5	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	83		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	105		60-140

 Project Name:
 UNIFIRST WELLS G&H
 Lab Number:
 L1108880

 Project Number:
 MA000989.0002.00003
 Report Date:
 08/05/11

SAMPLE RESULTS

Lab ID: L1108880-03 Date Collected: 06/17/11 10:02

Client ID: IA-5O-5-06162011 Date Received: 06/17/11 Sample Location: WOBURN, MA Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/28/11 01:08

Analyst: AR

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	0.117	0.020	0.020	0.575	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	0.176	0.020	0.020	0.712	0.081	0.081		1
1,2-Dichloropropane	0.022	0.020	0.020	0.102	0.092	0.092		1
1,3-Butadiene	0.062	0.020	0.020	0.137	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	0.170	0.070	0.070	0.543	0.224	0.224		1
Bromodichloromethane	0.023	0.020	0.010	0.154	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	0.077	0.020	0.020	0.484	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	0.410	0.020	0.020	2.00	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	0.424	0.020	0.020	1.84	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	0.073	0.050	0.025	0.383	0.262	0.131		1
Xylenes, Total	0.855	0.060	0.060	3.71	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.00003

Lab Number:

Report Date: 08/05/11

SAMPLE RESULTS

Lab ID: L1108880-03

Client ID: IA-5O-5-06162011 Sample Location: WOBURN, MA Date Collected:

06/17/11 10:02

Date Received:

06/17/11

L1108880

Field Prep:

Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Tetrachloroethene	0.345	0.020	0.020	2.34	0.136	0.136		1
Toluene	4.43	0.050	0.050	16.7	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	104		60-140

 Project Name:
 UNIFIRST WELLS G&H
 Lab Number:
 L1108880

 Project Number:
 MA000989.0002.00003
 Report Date:
 08/05/11

SAMPLE RESULTS

Lab ID: L1108880-04 Date Collected: 06/17/11 13:02

Client ID: SS-5O-4-06172011 Date Received: 06/17/11 Sample Location: WOBURN, MA Field Prep: Not Specified

Matrix: Soil_Vapor
Anaytical Method: 48,TO-15-SIM
Analytical Date: 06/28/11 02:51

Analyst: AR

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
1,1,1-Trichloroethane	0.028	0.020	0.020	0.153	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	0.073	0.020	0.020	0.359	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	0.025	0.020	0.020	0.157	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	0.096	0.020	0.020	0.469	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	0.080	0.050	0.025	0.419	0.262	0.131		1
Xylenes, Total	ND	0.060	0.060	ND	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H Project Number:

Lab Number:

L1108880

MA000989.0002.00003

Report Date: 08/05/11

SAMPLE RESULTS

Lab ID: L1108880-04

Client ID: SS-5O-4-06172011 Sample Location: WOBURN, MA

Date Collected:

06/17/11 13:02

Date Received:

06/17/11

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Tetrachloroethene	2.01	0.020	0.020	13.6	0.136	0.136		1
Toluene	0.155	0.050	0.050	0.584	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	93		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	107		60-140

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

SAMPLE RESULTS

Lab ID: L1108880-05 Date Collected: 06/17/11 00:00

Client ID: DUPSS06172011 Date Received: 06/17/11 Sample Location: WOBURN, MA Field Prep: Not Specified

Matrix: Soil_Vapor
Anaytical Method: 48,TO-15-SIM
Analytical Date: 06/28/11 03:25

Analyst: AR

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
1,1,1-Trichloroethane	0.027	0.020	0.020	0.147	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	0.026	0.020	0.020	0.128	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	0.024	0.020	0.020	0.151	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	0.035	0.020	0.020	0.171	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
Xylenes, Total	ND	0.060	0.060	ND	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.00003

Lab Number:

L1108880

Report Date:

08/05/11

SAMPLE RESULTS

Lab ID: L1108880-05
Client ID: DUPSS06172011

Sample Location:

Date Collected:

06/17/11 00:00

DUPSS06172011 Date Received: WOBURN, MA Field Prep:

06/17/11 Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
Tetrachloroethene	2.07	0.020	0.020	14.0	0.136	0.136		1
Toluene	0.084	0.050	0.050	0.316	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	104		60-140

 Project Name:
 UNIFIRST WELLS G&H
 Lab Number:
 L1108880

 Project Number:
 MA000989.0002.00003
 Report Date:
 08/05/11

SAMPLE RESULTS

Lab ID: Date Collected: 06/17/11 13:28

Client ID: SS-50-5-06172011 Date Received: 06/17/11 Sample Location: WOBURN, MA Field Prep: Not Specified

Matrix: Soil_Vapor
Anaytical Method: 48,TO-15-SIM
Analytical Date: 06/28/11 04:00

Analyst: AR

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	0.033	0.020	0.020	0.162	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	0.052	0.020	0.020	0.327	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	0.061	0.020	0.020	0.298	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
Kylenes, Total	ND	0.060	0.060	ND	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.00003

WOBURN, MA

Lab Number:

L1108880

Report Date:

08/05/11

SAMPLE RESULTS

Lab ID: L1108880-06
Client ID: SS-5O-5-06172011

Sample Location:

Date Collected:

06/17/11 13:28

Date Received:

06/17/11

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Tetrachloroethene	0.252	0.020	0.020	1.71	0.136	0.136		1
Toluene	0.117	0.050	0.050	0.441	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	93		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	104		60-140

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

SAMPLE RESULTS

Lab ID: Date Collected: 06/17/11 00:00

Client ID: TB06172011 Date Received: 06/17/11 Sample Location: WOBURN, MA Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/27/11 21:08

Analyst: AR

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	ND	0.020	0.020	ND	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	ND	0.020	0.020	ND	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	ND	0.020	0.020	ND	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	9.20	0.500	0.500	32.0	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
Xylenes, Total	ND	0.060	0.060	ND	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.00003

Lab Number:

L1108880

Report Date:

08/05/11

SAMPLE RESULTS

Lab ID: L1108880-07
Client ID: TB06172011
Sample Location: WOBURN, MA

Date Collected:

06/17/11 00:00

Date Received:

06/17/11

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Tetrachloroethene	ND	0.020	0.020	ND	0.136	0.136		1
Toluene	0.094	0.050	0.050	0.354	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	76		60-140
bromochloromethane	85		60-140
chlorobenzene-d5	76		60-140

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/27/11 19:46

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab fo	or sample	e(s): 01-07	Batch: W	G475607	'-4		
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	ND	0.020	0.020	ND	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	ND	0.020	0.020	ND	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	ND	0.020	0.020	ND	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
Xylenes, Total	ND	0.060	0.060	ND	0.261	0.261		1
Tetrachloroethene	ND	0.020	0.020	ND	0.136	0.136		1
Toluene	ND	0.050	0.050	ND	0.188	0.188		1

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/27/11 19:46

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab fo	or sample	(s): 01-07	Batch: Wo	G475607	'-4		
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Lab Control Sample Analysis Batch Quality Control

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.00003

Lab Number: L1108880

Report Date: 08/05/11

arameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated s	ample(s):	01-07	Batch:	WG475607-	3			
1,1,1-Trichloroethane	86			-		70-130	-		25
1,1,2-Trichloroethane	84			-		70-130	-		25
1,1-Dichloroethane	97			-		70-130	-		25
1,1-Dichloroethene	114			-		70-130	-		25
1,2,4-Trimethylbenzene	82			-		70-130	-		25
1,2-Dibromoethane	92			-		70-130	-		25
1,2-Dichloroethane	95			-		70-130	-		25
1,2-Dichloropropane	88			-		70-130	-		25
1,3-Butadiene	142	Q		-		70-130	-		25
1,3-Dichlorobenzene	85			-		70-130	-		25
1,4-Dichlorobenzene	82			-		70-130	-		25
Benzene	83			-		70-130	-		25
Bromodichloromethane	95			-		70-130	-		25
Bromoform	108			-		70-130	-		25
Carbon tetrachloride	97			-		70-130	-		25
Chlorobenzene	92			-		70-130	-		25
Chloroform	94			-		70-130	-		25
cis-1,2-Dichloroethene	97			-		70-130	-		25
Ethylbenzene	87			-		70-130	-		25
Methylene chloride	102			-		70-130	-		25
Methyl tert butyl ether	88			-		70-130	-		25

Lab Control Sample Analysis Batch Quality Control

Project Name: UNIFIRST WELLS G&H **Project Number:** MA000989.0002.00003

Lab Number: L1108880

Report Date:	08/05/11
--------------	----------

arameter	LCS %Recovery	Qual	LC: %Rec		Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sa	mple(s):	01-07 B	atch:	WG475607-3				
Naphthalene	79			-		70-130	-		25
p/m-Xylene	88			-		70-130	-		25
o-Xylene	88			-		70-130	-		25
Tetrachloroethene	97			-		70-130	-		25
Toluene	76			-		70-130	-		25
trans-1,2-Dichloroethene	99			-		70-130	-		25
trans-1,3-Dichloropropene	77			-		70-130	-		25
Trichloroethene	88			-		70-130	-		25
Vinyl chloride	121			-		70-130	-		25
Isopropylbenzene	82			-		70-130	-		25

Lab Duplicate Analysis Batch Quality Control

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.000

Lab Number:

L1108880

Report Date: 08/05/11

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Volatile Organics in Air by SIM - Mansfield Lab Sample	Associated sample(s): 01-07	QC Batch ID: WG475607-5	QC Sample:	: L110887	9-02 Client ID: DUP
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	0.036	0.046	ppbV	24	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichloroethane	0.114	0.122	ppbV	7	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
Benzene	0.087	0.086	ppbV	1	25
Bromodichloromethane	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.073	0.073	ppbV	0	25
Chlorobenzene	ND	ND	ppbV	NC	25
Chloroform	0.028	0.028	ppbV	0	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethylbenzene	0.045	0.045	ppbV	0	25

Lab Duplicate Analysis Batch Quality Control

Project Name: UNIFIRST WELLS G&H
Project Number: MA000989.0002.000

Lab Number:

L1108880

Report Date:

08/05/11

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG475607-5	QC Sample:	L1108879-02	Client ID: DUP
Methylene chloride	0.964	0.804	ppbV	18	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
Naphthalene	0.026J	0.037J	ppbV	NC	25
XYLENE (TOTAL)	0.142	0.154	ppbV	8	25
Tetrachloroethene	ND	ND	ppbV	NC	25
Toluene	0.320	0.359	ppbV	11	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
Isopropylbenzene	ND	ND	ppbV	NC	25

Serial_No:08051113:01 **Lab Number:** L1108880

Project Name: UNIFIRST WELLS G&H

Project Number: MA000989.0002.00003

Report Date: 08/05/11

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L1108880-01	AA-57O-1-06162011	0481	#16 AMB		-	-	3.3	3.6	9
L1108880-01	AA-57O-1-06162011	995	6.0L Can	L1108049-11	-29.4	-5.4	-	-	-
L1108880-02	IA-5O-4-06162011	0192	#16 AMB		-	-	3.1	3.4	9
L1108880-02	IA-5O-4-06162011	686	6.0L Can	L1108049-19	-29.4	-5.6	-	-	-
L1108880-03	IA-5O-5-06162011	0152	#16 AMB		-	-	3.0	4.0	29
L1108880-03	IA-5O-5-06162011	575	6.0L Can	L1108049-16	-29.4	-4.1	-	-	-
L1108880-04	SS-50-4-06172011	0073	#16 AMB		-	-	160	164	2
L1108880-04	SS-50-4-06172011	1658	6.0L Can	L1108049-28	-29.4	-5.9	-	-	-
L1108880-05	DUPSS06172011	0391	#90 AMVB		-	-	160	165	3
L1108880-05	DUPSS06172011	748	6.0L Can	L1108049-27	-29.4	-6.3	-	-	-
L1108880-06	SS-50-5-06172011	0052	#90 SV		-	-	160	161	1
L1108880-06	SS-50-5-06172011	1565	6.0L Can	L1108049-33	-29.4	-5.6	-	-	-
L1108880-07	TB06172011	0149	#16 AMB		-	-	3.0	3.6	18
L1108880-07	TB06172011	1691	6.0L Can	L1108049-04	-29.4	-29.4	-	-	-

Air Volatiles Can Certification

L1108049

Lab Number:

Project Name: UNIFIRST WELLS G&H

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-04 Date Collected: 06/08/11 00:00

Client ID: CAN 1691 FC 149 Date Received: 06/08/11

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/08/11 21:23

Analyst: RY

	Vdqq			ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
insfield Lab							
ND	0.020	0.020	ND	0.109	0.109		1
ND	0.020	0.020	ND	0.109	0.109		1
ND	0.020	0.020	ND	0.081	0.081		1
ND	0.020	0.020	ND	0.079	0.079		1
ND	0.020	0.020	ND	0.098	0.098		1
ND	0.020	0.010	ND	0.154	0.077		1
ND	0.020	0.020	ND	0.081	0.081		1
ND	0.020	0.020	ND	0.092	0.092		1
ND	0.020	0.020	ND	0.044	0.044		1
ND	0.020	0.020	ND	0.120	0.120		1
ND	0.020	0.020	ND	0.120	0.120		1
ND	0.070	0.070	ND	0.224	0.224		1
ND	0.020	0.010	ND	0.134	0.067		1
ND	0.020	0.020	ND	0.207	0.207		1
ND	0.020	0.020	ND	0.126	0.126		1
ND	0.020	0.020	ND	0.092	0.092		1
ND	0.020	0.020	ND	0.098	0.098		1
ND	0.020	0.020	ND	0.079	0.079		1
ND	0.020	0.020	ND	0.087	0.087		1
ND	0.500	0.500	ND	1.74	1.74		1
ND	0.020	0.020	ND	0.072	0.072		1
ND	0.050	0.025	ND	0.262	0.131		1
ND	0.040	0.040	ND	0.174	0.174		1
ND	0.020	0.020	ND	0.087	0.087		1
ND	0.060	0.060	ND	0.261	0.261		1
	Insfield Lab ND ND ND ND ND ND ND ND ND N	Results RL	Results RL MDL	Results RL MDL Results Insfield Lab ND 0.020 0.020 ND ND 0.020 0.020 ND ND ND 0.020 0.010 ND ND ND 0.020 0.020 ND ND 0.020	Results RL MDL Results RL Insfield Lab ND 0.020 ND 0.109 ND 0.020 0.020 ND 0.109 ND 0.020 0.020 ND 0.098 ND 0.020 0.020 ND 0.079 ND 0.020 0.020 ND 0.098 ND 0.020 0.020 ND 0.098 ND 0.020 0.010 ND 0.154 ND 0.020 0.020 ND 0.081 ND 0.020 0.020 ND 0.081 ND 0.020 0.020 ND 0.081 ND 0.020 0.020 ND 0.044 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.134 ND 0.020 0.020 ND 0.022 <td>Results RL MDL Results RL MDL Insfield Lab ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.092 0.092 ND 0.020 0.020 ND 0.120 0.120 ND 0.020 0.020 ND 0.120 0.120 ND 0.020</td> <td>Results RL MDL Results RL MDL Qualifier Insfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 0.079 ND 0.020 0.020 ND 0.098 0.098 0.098 ND 0.020 0.020 ND 0.091 0.077 0.077 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.092 0.092 0.092 ND 0.020 0.020 ND 0.120 0.120 0.120 ND 0.020 0.020 ND 0.124</td>	Results RL MDL Results RL MDL Insfield Lab ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.092 0.092 ND 0.020 0.020 ND 0.120 0.120 ND 0.020 0.020 ND 0.120 0.120 ND 0.020	Results RL MDL Results RL MDL Qualifier Insfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 0.079 ND 0.020 0.020 ND 0.098 0.098 0.098 ND 0.020 0.020 ND 0.091 0.077 0.077 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.092 0.092 0.092 ND 0.020 0.020 ND 0.120 0.120 0.120 ND 0.020 0.020 ND 0.124

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-04 Date Collected: 06/08/11 00:00

Client ID: CAN 1691 FC 149 Date Received: 06/08/11

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	field Lab							
Tetrachloroethene	ND	0.020	0.020	ND	0.136	0.136		1
Toluene	ND	0.050	0.050	ND	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: Date Collected: 06/08/11 00:00

Client ID: CAN 1691 FC 149 Date Received: 06/08/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	110		60-140
chlorobenzene-d5	73		60-140

L1108049

Lab Number:

Project Name: UNIFIRST WELLS G&H

06/09/11 01:38

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-11 Date Collected: 06/08/11 00:00

Client ID: Date Received: CAN 995 FC 146 06/08/11

Field Prep: Sample Location: Not Specified

Matrix:

Air Anaytical Method: 48,TO-15-SIM

Analyst: RY

Analytical Date:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	ND	0.020	0.020	ND	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	ND	0.020	0.020	ND	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	ND	0.020	0.020	ND	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
p/m-Xylene	ND	0.040	0.040	ND	0.174	0.174		1
o-Xylene	ND	0.020	0.020	ND	0.087	0.087		1
XYLENE (TOTAL)	ND	0.060	0.060	ND	0.261	0.261		1

Date Received:

Project Name: Lab Number: **UNIFIRST WELLS G&H** L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-11 Date Collected: 06/08/11 00:00

06/08/11 Sample Location: Field Prep: Not Specified

ppbV ug/m3 **Dilution** Factor Results RLQualifier **Parameter** Results RLMDL MDL Volatile Organics in Air by SIM - Mansfield Lab Tetrachloroethene ND 0.020 0.020 ND 0.136 0.136 1 Toluene ND 0.050 0.050 ND 0.188 0.188 1 trans-1,2-Dichloroethene ND 0.020 0.020 ND 0.079 0.079 1 trans-1,3-Dichloropropene ND 0.020 0.020 ND 0.091 0.091 1 Trichloroethene ND 0.020 0.020 ND 0.107 0.107 1

0.020

0.500

ND

ND

0.051

2.46

0.051

2.46

1

1

0.020

0.500

Client ID:

Vinyl chloride

Isopropylbenzene

CAN 995 FC 146

ND

ND

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: Date Collected: 06/08/11 00:00

Client ID: CAN 995 FC 146 Date Received: 06/08/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	122		60-140
chlorobenzene-d5	75		60-140

L1108049

Lab Number:

Project Name: UNIFIRST WELLS G&H

Project Number: Report Date: Not Specified 08/05/11

Air Canister Certification Results

Lab ID: L1108049-16 Date Collected: 06/09/11 00:00

Client ID: Date Received: CAN 575 FC 152 06/09/11

Field Prep: Sample Location: Not Specified

Matrix: Air

48,TO-15-SIM Anaytical Method: Analytical Date: 06/09/11 22:36

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	ND	0.020	0.020	ND	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	ND	0.020	0.020	ND	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	ND	0.020	0.020	ND	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
p/m-Xylene	ND	0.040	0.040	ND	0.174	0.174		1
o-Xylene	ND	0.020	0.020	ND	0.087	0.087		1
XYLENE (TOTAL)	ND	0.060	0.060	ND	0.261	0.261		1

Date Received:

Project Name: Lab Number: UNIFIRST WELLS G&H L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-16 Date Collected: 06/09/11 00:00

CAN 575 FC 152 06/09/11 Sample Location: Field Prep: Not Specified

ppbV ug/m3 **Dilution** Factor Results RLQualifier **Parameter** Results RLMDL MDL Volatile Organics in Air by SIM - Mansfield Lab Tetrachloroethene ND 0.020 0.020 ND 0.136 0.136 1 Toluene ND 0.050 0.050 ND 0.188 0.188 1 trans-1,2-Dichloroethene ND 0.020 0.020 ND 0.079 0.079 1 trans-1,3-Dichloropropene ND 0.020 0.020 ND 0.091 0.091 1 Trichloroethene ND 0.020 0.020 ND 0.107 0.107 1 Vinyl chloride ND 0.020 0.020 ND 0.051 0.051 1

0.500

0.500

ND

2.46

2.46

ND

1

Client ID:

Isopropylbenzene

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: Date Collected: 06/09/11 00:00

Client ID: CAN 575 FC 152 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	123		60-140
chlorobenzene-d5	75		60-140

L1108049

Lab Number:

Project Name: UNIFIRST WELLS G&H

06/10/11 00:24

Project Number: Report Date: Not Specified 08/05/11

Air Canister Certification Results

Lab ID: L1108049-19 Date Collected: 06/09/11 00:00

Client ID: Date Received: CAN 686 FC 192 06/09/11

Field Prep: Sample Location: Not Specified

Matrix: Air 48,TO-15-SIM Anaytical Method:

Analyst: RY

Analytical Date:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	ND	0.020	0.020	ND	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	ND	0.020	0.020	ND	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	ND	0.020	0.020	ND	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
o/m-Xylene	ND	0.040	0.040	ND	0.174	0.174		1
o-Xylene	ND	0.020	0.020	ND	0.087	0.087		1
XYLENE (TOTAL)	ND	0.060	0.060	ND	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-19 Date Collected: 06/09/11 00:00

Client ID: CAN 686 FC 192 Date Received: 06/09/11 Sample Location: Field Prep: Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	field Lab							
Tetrachloroethene	ND	0.020	0.020	ND	0.136	0.136		1
Toluene	ND	0.050	0.050	ND	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: Date Collected: 06/09/11 00:00

Client ID: CAN 686 FC 192 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	128		60-140
chlorobenzene-d5	81		60-140

L1108049

Project Name: UNIFIRST WELLS G&H Lab Number:

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-27 Date Collected: 06/09/11 00:00

Client ID: CAN 748 FC 391 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 06/11/11 13:16

Analyst: RY

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
insfield Lab							
ND	0.020	0.020	ND	0.109	0.109		1
ND	0.020	0.020	ND	0.109	0.109		1
ND	0.020	0.020	ND	0.081	0.081		1
ND	0.020	0.020	ND	0.079	0.079		1
ND	0.020	0.020	ND	0.098	0.098		1
ND	0.020	0.010	ND	0.154	0.077		1
ND	0.020	0.020	ND	0.081	0.081		1
ND	0.020	0.020	ND	0.092	0.092		1
ND	0.020	0.020	ND	0.044	0.044		1
ND	0.020	0.020	ND	0.120	0.120		1
ND	0.020	0.020	ND	0.120	0.120		1
ND	0.070	0.070	ND	0.224	0.224		1
ND	0.020	0.010	ND	0.134	0.067		1
ND	0.020	0.020	ND	0.207	0.207		1
ND	0.020	0.020	ND	0.126	0.126		1
ND	0.020	0.020	ND	0.092	0.092		1
ND	0.020	0.020	ND	0.098	0.098		1
ND	0.020	0.020	ND	0.079	0.079		1
ND	0.020	0.020	ND	0.087	0.087		1
ND	0.500	0.500	ND	1.74	1.74		1
ND	0.020	0.020	ND	0.072	0.072		1
ND	0.050	0.025	ND	0.262	0.131		1
ND	0.040	0.040	ND	0.174	0.174		1
ND	0.020	0.020	ND	0.087	0.087		1
ND	0.060	0.060	ND	0.261	0.261		1
	Insfield Lab ND ND ND ND ND ND ND ND ND N	Results RL	Results RL MDL MDL MD MD MD MD MD	Results RL MDL Results Insfield Lab ND 0.020 0.020 ND ND 0.020 0.020 ND ND ND 0.020	Results RL MDL Results RL Insfield Lab ND 0.020 ND 0.109 ND 0.020 0.020 ND 0.109 ND 0.020 0.020 ND 0.098 ND 0.020 0.020 ND 0.079 ND 0.020 0.020 ND 0.098 ND 0.020 0.020 ND 0.098 ND 0.020 0.020 ND 0.098 ND 0.020 0.020 ND 0.081 ND 0.020 0.020 ND 0.081 ND 0.020 0.020 ND 0.081 ND 0.020 0.020 ND 0.044 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.120 ND 0.020 0.020 ND 0.134 ND 0.020 0.020 ND 0.022 <td>Results RL MDL Results RL MDL Insfield Lab ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.081 0.091 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.092 0.092 ND 0.020 0.020 ND 0.120 0.120 ND 0.020 0.020 ND 0.124 0.224 ND 0.020</td> <td>Results RL MDL Results RL MDL Qualifier Insfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.098 0.098 0.098 ND 0.020 0.020 ND 0.091 0.077 0.077 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.044 0.044 0.044 ND 0.020 0.020 ND 0.120</td>	Results RL MDL Results RL MDL Insfield Lab ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.079 0.079 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.098 0.098 ND 0.020 0.020 ND 0.081 0.091 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 ND 0.020 0.020 ND 0.092 0.092 ND 0.020 0.020 ND 0.120 0.120 ND 0.020 0.020 ND 0.124 0.224 ND 0.020	Results RL MDL Results RL MDL Qualifier Insfield Lab ND 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.109 0.109 0.109 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.098 0.098 0.098 ND 0.020 0.020 ND 0.091 0.077 0.077 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.081 0.081 0.081 ND 0.020 0.020 ND 0.044 0.044 0.044 ND 0.020 0.020 ND 0.120

Date Received:

Project Name: Lab Number: UNIFIRST WELLS G&H L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-27 Date Collected: 06/09/11 00:00

CAN 748 FC 391 06/09/11 Sample Location: Field Prep: Not Specified

ppbV ug/m3 **Dilution** Factor Results RLQualifier **Parameter** Results RLMDL MDL Volatile Organics in Air by SIM - Mansfield Lab Tetrachloroethene ND 0.020 0.020 ND 0.136 0.136 1 Toluene ND 0.050 0.050 ND 0.188 0.188 1 trans-1,2-Dichloroethene ND 0.020 0.020 ND 0.079 0.079 1 trans-1,3-Dichloropropene ND 0.020 0.020 ND 0.091 0.091 1 Trichloroethene ND 0.020 0.020 ND 0.107 0.107 1 Vinyl chloride ND 0.020 0.020 ND 0.051 0.051 1 Isopropylbenzene ND 0.500 1 0.500 ND2.46 2.46

Client ID:

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-27 Date Collected: 06/09/11 00:00

Client ID: CAN 748 FC 391 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	112		60-140
bromochloromethane	136		60-140
chlorobenzene-d5	87		60-140

L1108049

Lab Number:

Project Name: UNIFIRST WELLS G&H

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-28 Date Collected: 06/09/11 00:00

Client ID: Date Received: CAN 1658 FC 073 06/09/11

Field Prep: Sample Location: Not Specified

Matrix: Air

48,TO-15-SIM Anaytical Method: Analytical Date: 06/11/11 13:51

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	ND	0.020	0.020	ND	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	ND	0.020	0.020	ND	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	ND	0.020	0.020	ND	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
p/m-Xylene	ND	0.040	0.040	ND	0.174	0.174		1
o-Xylene	ND	0.020	0.020	ND	0.087	0.087		1
(YLENE (TOTAL)	ND	0.060	0.060	ND	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-28 Date Collected: 06/09/11 00:00

Client ID: CAN 1658 FC 073 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	field Lab							
Tetrachloroethene	ND	0.020	0.020	ND	0.136	0.136		1
Toluene	ND	0.050	0.050	ND	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-28 Date Collected: 06/09/11 00:00

Client ID: CAN 1658 FC 073 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	113		60-140
bromochloromethane	135		60-140
chlorobenzene-d5	88		60-140

L1108049

Lab Number:

Project Name: UNIFIRST WELLS G&H

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-33 Date Collected: 06/09/11 00:00

Client ID: CAN 1565 FC 052 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/11/11 16:50

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab							
1,1,1-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1,2-Trichloroethane	ND	0.020	0.020	ND	0.109	0.109		1
1,1-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,1-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
1,2,4-Trimethylbenzene	ND	0.020	0.020	ND	0.098	0.098		1
1,2-Dibromoethane	ND	0.020	0.010	ND	0.154	0.077		1
1,2-Dichloroethane	ND	0.020	0.020	ND	0.081	0.081		1
1,2-Dichloropropane	ND	0.020	0.020	ND	0.092	0.092		1
1,3-Butadiene	ND	0.020	0.020	ND	0.044	0.044		1
1,3-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
1,4-Dichlorobenzene	ND	0.020	0.020	ND	0.120	0.120		1
Benzene	ND	0.070	0.070	ND	0.224	0.224		1
Bromodichloromethane	ND	0.020	0.010	ND	0.134	0.067		1
Bromoform	ND	0.020	0.020	ND	0.207	0.207		1
Carbon tetrachloride	ND	0.020	0.020	ND	0.126	0.126		1
Chlorobenzene	ND	0.020	0.020	ND	0.092	0.092		1
Chloroform	ND	0.020	0.020	ND	0.098	0.098		1
cis-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
Ethylbenzene	ND	0.020	0.020	ND	0.087	0.087		1
Methylene chloride	ND	0.500	0.500	ND	1.74	1.74		1
Methyl tert butyl ether	ND	0.020	0.020	ND	0.072	0.072		1
Naphthalene	ND	0.050	0.025	ND	0.262	0.131		1
p/m-Xylene	ND	0.040	0.040	ND	0.174	0.174		1
o-Xylene	ND	0.020	0.020	ND	0.087	0.087		1
XYLENE (TOTAL)	ND	0.060	0.060	ND	0.261	0.261		1

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-33 Date Collected: 06/09/11 00:00

Client ID: CAN 1565 FC 052 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mansf	ield Lab							
Tetrachloroethene	ND	0.020	0.020	ND	0.136	0.136		1
Toluene	ND	0.050	0.050	ND	0.188	0.188		1
trans-1,2-Dichloroethene	ND	0.020	0.020	ND	0.079	0.079		1
trans-1,3-Dichloropropene	ND	0.020	0.020	ND	0.091	0.091		1
Trichloroethene	ND	0.020	0.020	ND	0.107	0.107		1
Vinyl chloride	ND	0.020	0.020	ND	0.051	0.051		1
Isopropylbenzene	ND	0.500	0.500	ND	2.46	2.46		1

Project Name: UNIFIRST WELLS G&H Lab Number: L1108049

Project Number: Not Specified Report Date: 08/05/11

Air Canister Certification Results

Lab ID: L1108049-33 Date Collected: 06/09/11 00:00

Client ID: CAN 1565 FC 052 Date Received: 06/09/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	120		60-140
chlorobenzene-d5	78		60-140

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

N/A Present/Intact

Container Info	rmation			Temp		
Container ID	Container Type	Cooler	рН	deg C Pres	Seal	Analysis(*)
L1108880-01A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-SIM-UNI(30)
L1108880-02A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-SIM-UNI(30)
L1108880-03A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-SIM-UNI(30)
L1108880-04A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-SIM-UNI(30)
L1108880-05A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-SIM-UNI(30)
L1108880-06A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-SIM-UNI(30)
L1108880-07A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-SIM-UNI(30)

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: DU Report with "J" Qualifiers

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

Data Qualifiers

than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL). This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the method detection limit (MDL) for the sample.

Report Format: DU Report with "J" Qualifiers

Project Name:UNIFIRST WELLS G&HLab Number:L1108880Project Number:MA000989.0002.00003Report Date:08/05/11

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised August 4, 2011 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, SM2540G.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 180.1, 245.7, 1631E, 3020, 6020A, 7470A, 9040, 9050A, SM2320B, 2540D, 2540G, 4500H-B, Organic Parameters: EPA 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 5030B, 8015D, 3570, 8081B, 8082A, 8260B, 8270C, 8270D.)

Solid & Chemical Materials (Inorganic Parameters: EPA 1311, 3050, 3051A, 3060A, 6020A, 7196A, 7470A, 7471B, 7474, 9040B, 9045C, 9060. Organic Parameters: EPA 3540C, 3570B, 3580A, 3630C, 3640A, 3660, 3665A, 5035, 8015D, 8081B, 8082A, 8260B, 8270C, 8270D.)

Biological Tissue (Inorganic Parameters: EPA 6020A. Organic Parameters: EPA 3570, 3510C, 3610B, 3630C, 3640A, 8270C, 8270D.)

Air & Emissions (EPA TO-15.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA, 245.1, 245.7, 1631E, 180.1, 6020A, 7470A, 9040B, 9050A, SM2540D, 2540G, 4500H+B, 2320B. Organic Parameters: EPA 8081, 8082, 8260B, 8270C.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 1311, 1312, 3050B, 3051A, 3060A, 6020A, 7470A, 7471A, 9040B, 9045C, 7196A. Organic Parameters: SW-846 3540C, 3580, 3630C, 3640A, 3660B, 3665A, 5035, 8260B, 8270C, 8015D, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SW-846 1312, 3010, 3020A, 3015, SM2320B, SM2540D, 2540G, , EPA 180.1, 1631E, SW-846 7470A, 9040B, 6020. Organic Parameters: SW-846 3510C, 3580A, 5030B, 5035L, 5035H, 3630C, 3640C, 3660B, 3665A, 8015B 8081A, 8082, 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9040B, 9045C, 9050A, 9060. Organic Parameters: SW-846 3540C, 3570, 3580A, 5030B, 5035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610C, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SM2320B, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 245.7, 7470A, 9014, 9040B, 9050, 120.1, 4500CN-E, 4500H-B, EPA 376.2, 180.1, 3020A. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8082, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 6020, 7196A, 3060A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 1312, 3050B, 3580, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 1311, 7196, 9040, 9045, 9060. Organic Parameters: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

Washington State Department of Ecology <u>Certificate/Lab ID</u>: C954. *Non-Potable Water* (<u>Inorganic Parameters</u>: SM2540D, 2510B, EPA 120.1, 180.1, 1631E, 245.7.)

Solid & Chemical Materials (Inorganic Parameters: EPA 9040, 9060, 6020, 7470, 7471, 7474. Organic Parameters: EPA 8081, 8082, 8015 Mod, 8270, 8260.)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Non-Potable Water (Inorganic Parameters: EPA 6020A, SM4500H-B. Organic Parameters: 3020A, 3510C, 5030B, 8260B, 8270C, 8270C-ALK-PAH, 8082, 8081A, 8015D-SHC.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 3050B, 6020A, 7471A, 9045C, 9060, SM 2540G, ASTM D422-63. Organic Parameters: EPA 3580A, 3570, 3540C, 5035A, 8260B, 8270C, 8270-ALK-PAH, 8082, 8081A, 8015D-SHC, 8015-DRO.

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **8270C**: Biphenyl. **TO-15**: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 2-Methylnaphthalene, 1-Methylnaphthalene.

20 Forces Bod, Namidial MA 2008 TILL 1808-822-900 FAX: 508-822-9288. Ciliont Information Project Name: Cni First: Well/s G4H Project Control Work MA Project Control Work MA Project State: Cni First: Well/s G4H Project Manager Project Man	AIRAN	NALYSIS PAGEOFZ	Date Reciding Labrasia	ALRHA Job#: Littoppp
Sample Date Start Time End Time Start Time End Time Start Time End Start Time End Time Start T	CHAIN OF CUSTODY	Project Information	Report Information - Data Deliverables	
Client Information Project St. MACKD 900 2007 D003 Address U. 82 Congress Suffer 50 Project St. MACKD 900 2007 D003 Port Lead, PLE 64401 ALPHA Quick St. Project St. MACKD 900 2007 D003 Port Lead, PLE 64401 ALPHA Quick St. Project St. MACKD 900 2007 D003 Port Lead, PLE 64401 ALPHA Quick St. Project St. MACKD 900 2007 D003 Additional Device devices and past of the following the policy of the st. Project St. 207-828-062 Bandlard URUSH see services and past of the following the policy of the st. Project Specific Requirements/Comments: ALI COlumns Bollow Must Bo Fill Col Out ALPHA (See St.) Project Specific Requirements/Comments: ALI Columns Bollow Must Bo Fill Col Out ALPHA (See St.) Project Specific Requirements/Comments: ALI Columns Bollow Must Bo Fill Col Out ALPHA (See St.) Project Specific Requirements/Comments: ALI Columns Bollow Must Bo Fill Col Out ALPHA (See St.) Project Specific Requirements/Comments: ALI Columns Bollow Must Bo Fill Col Out ALPHA (See St.) Project Specific Requirements/Comments: ALI Columns Bollow Must Bo Fill Col Out Ali Collisions Developed Bollow Bol	the state of the s			
Client A.P.C.A.D.I.S.	1 (See 2016) 2016 (1996)	Project Location: / /b/ / / / / / /	□ ADEx	
Additional Deliverables: Band Concepted Survive State Program Progr	Client: ARANC	I to the second of the second		
Prone: 207-828-046				Regulatory Requirements/Report Limits
Phone: 207-828-0062	Portled WE 04/01			
Sample Date Due: Time: Date Due: Date D	2		Report to: (If different than Project Manager)	
These samples have been previously analyzed by Apha Date Due: Time:	<u>0</u>	Strate, again		
Time: Other Project Specific Requirements/Comments: All Columns Bolow Must Be Filled Out AlPHRIate ID Just She failing Sample ID AA-570-1-06162011 4/6 4/7 0950 0952 -30" -6.3 AA MAU 6L 995 491 X TA-70-3-06162011 TA-70-1-06162011 TA-70-1	7	■ RUSH (only confirmed if pre-approved!)		ANALYSIS
All Columns Below Must Be Filled Out ALPHKLabiD (Lap Use Only) Sample ID				
88 10 AA-570-1-06 62011 6/16 6/17 0950 0952 -30" -6.3 AA MW 6L 995 481 X IA-70-3-06 62011 6/16 6/17 0959 0957 -298" -5.2" AA MW 6L 648 129 X IA-70-2-06 62011 6/16 6/17 0959 0957 -298" -5.2" AA MW 6L 1619 224 X IA-70-1-06 62011 6/16 6/17 1001 0958 -30" -6.3 AA MW 6L 801 131 X LA-50-4-06 62011 6/16 6/17 1006 1001 -30" -6.4" AA MW 6L 686 192 X 3 DA-50-5-06 62011 6/16 6/17 1009 1002 -30" -5.1" AA MW 6L 575 152 X SS-70-1-06 72011 6/16 6/17 1009 1002 -30" -5.1" AA MW 6L 1672 293 X SS-70-2-06 72011 6/16 6/17 1024 1154 -24.3" -63" SV MW 6L 1672 293 X SS-50-4-06 72011 6/17 6/17 124 1154 -24.3" -63" SV MW 6L 1680 73 X 5 DU\$ \$5672011 6/17 6/17 1009 1002 -29.6 -6.4 SV MW 6L 1658 073 X 5 DU\$ \$5672011 6/17 6/17	Other Project Specific Requirements/Comm	nents:	/.	
88 10 AA-570-1-06 62011 6/16 6/17 0950 0952 -30" -6.3 AA MW 6L 995 491 X DA-70-3-06 62011 6/16 6/17 0959 0957 -248" -5.2" AA MW 6L 648 129 X DA-70-1-06 62011 6/16 6/17 0959 0957 -248" -5.2" AA MW GL 1619 229 X DA-70-1-06 62011 6/16 6/17 1001 0958 -30" -6.3 AA MW 6L 806 192 X DA-50-4-06 62011 6/16 6/17 1009 1002 -30" -6.4" AA MW 6L 686 192 X 3 DA-50-5-06 62011 6/16 6/17 1009 1002 -30" -5.1" AA MW 6L 1672 293 X SS-70-1-06 72011 6/16 6/17 1049 1119 -247 -5.1" SV MW 6L 1672 293 X SS-70-2-06 72011 6/17 6/17 1024 1154 -24.3" -6.3" SV MW 6L 1672 293 X SS-50-4-06 72011 6/17 6/17 124 1154 -24.3" -6.3" SV MW 6L 1658 073 X 5 DUPS 06 72011 6/17 6/17			S	
8810 AA-570-1-06162011 6/16 6/17 0950 0952 -30" -6.3 AA MW 6L 995 491 X IA-70-3-06162011 6/16 6/17 0959 0957 -248" -5.2" AA MW 6L 648 129 X IA-70-2-06162011 6/16 6/17 0959 0957 -248" -5.2" AA MW GL 1619 224 X IA-70-1-06162011 6/16 6/17 1001 0958 -30" -6.3 AA MW 6L 1619 224 X LA-50-4-06162011 6/16 6/17 1009 1002 -30" -6.4" AA MW 6L 686 192 X 3 AA-50-5-06162011 9/16 9/17 1009 1002 -30" -5.1" AA MW 6L 575 152 X SS-70-1-06172011 6/16 6/17 1009 1002 -30" -5.1" AA MW 6L 1672 293 X SS-70-2-06172011 6/16 6/17 1024 1154 -24.3" -63" SV MW 6L 1672 293 X SS-50-4-06172011 6/17 6/17 124 1154 -24.3" -63" SV MW 6L 1669 363 X 4 SS-50-4-06172011 6/17 6/17 124 1154 -24.3" -63" SV MW 6L 1658 073 X 5 DUPS 06172011 6/17 6/17	All C	olumns Below Must Be	Filled Out	
8810 AA-570-1-06162011 6/16 6/17 0950 0952 -30" -6.3 AA MW 6L 995 491 X IA-70-3-06162011 6/16 6/17 0959 0957 -248" -5.2" AA MW 6L 648 129 X IA-70-2-06162011 6/16 6/17 0959 0957 -248" -5.2" AA MW GL 1619 224 X IA-70-1-06162011 6/16 6/17 1001 0958 -30" -6.3 AA MW 6L 1619 224 X LA-50-4-06162011 6/16 6/17 1009 1002 -30" -6.4" AA MW 6L 686 192 X 3 AA-50-5-06162011 9/16 9/17 1009 1002 -30" -5.1" AA MW 6L 575 152 X SS-70-1-06172011 6/16 6/17 1009 1002 -30" -5.1" AA MW 6L 1672 293 X SS-70-2-06172011 6/16 6/17 1024 1154 -24.3" -63" SV MW 6L 1672 293 X SS-50-4-06172011 6/17 6/17 124 1154 -24.3" -63" SV MW 6L 1669 363 X 4 SS-50-4-06172011 6/17 6/17 124 1154 -24.3" -63" SV MW 6L 1658 073 X 5 DUPS 06172011 6/17 6/17		cher (mitial Final	Sample Sampler's Can ID ID-Flow	C A A A A A A A A A A A A A A A A A A A
TA-70-3-06162011 4/16 4/17 0953 0954 -30" -6.3 AA MU GL 495 431 A TA-70-3-06162011 6/16 4/17 0959 0957 -29B' -5.2" AA MU GL 1619 224 X TA-70-1-06162011 6/16 4/17 1000 1 0958 -30" -6.3 AA MU GL 1619 224 X TA-50-4-06162011 4/16 4/17 1000 1 0958 -30" -6.3 AA MU GL 601 131 X LA-50-4-06162011 4/16 4/17 1000 1001 -30" -6.4" AA MU GL 606 192 X 3 LA-50-5-06162011 4/16 4/17 1009 1002 -30" -5.1" AA MU GL 60575 152 X SS-70-1-06172011 6/17 4/17 1099 1002 -30" -5.1" AA MU GL 1672 293 X SS-70-2-06172011 6/17 4/17 1024 1154 -29.8 -63" SV MW GL 1664 363 X 4 SS-50-4-06172011 6/17 6/17 124 1154 -29.8 -63" SV MW GL 1664 363 X 5 DUPS 06172011 6/17 6/17				
TA-70-2-06162011 6/16 6/17 0959 0957 -298 -5.2" Ad NW CL 1619 224 X TA-70-1-06162011 6/16 6/17 100 1 0958 -30" -6.3 Ad NW GL 901 151 X L DA-50-4-06162011 6/16 6/17 100 6 100 1 -30" -6.4" AA NW GL 686 192 X 3 DA-50-5-06162011 6/16 6/17 100 9 100 2 -30" -5.1" AA MW GL 575 152 X S-70-1-06172011 6/17 6/17 1049 1119 -247 -54" SV MW GL 1672 293 X 55-70-2-06172011 6/17 6/17 1124 1154 -248 -63" SV MW GL 1669 363 X 4 S-50-4-06172011 6/17 6/17 1132 1302 -29.6 -6.4 SV MW GL 1658073 X 5 DUPS 06172011 6/17 6/17279 -6.9 SV MW GL 748 391 X **SAMPLE MATRIX COBES SV- SQI Varor Clandrill flows SVE Ontainer Type **SAMPLE MATRIX COBES SV- SQI Varor Clandrill flows SVE Ontainer Type The segmint clearly exploy and explored specific container Type The segmint clearly exploy and explored specific container Type **SAMPLE MATRIX COBES SV- SQI Varor Clandrill flows SVE Ontainer Type The segmint clearly exploy and explored specific container Type The segmint clearly exploy and explored specific container Type The segmint clearly exploy and explored specific container Type The segmint clearly exploy and explored specific container Type The segmint clearly exploy and explored specific container Type The segmint clearly exploy and explored specific container Type The segmint clearly exployed container Type The segmint container Type The segmint cont	1111 5 70 100011		AA "W 62 795 481	
TA-70-1-06/62011 6/12 6/01 0958 -30" -6.3 Add MW 6L 801 131 X 2 DA-50-4-06/62011 6/12 1006 1001 -30" -6.4" AA MW 6L 806 192 X 3 DA-50-5-06/62011 6/12 1009 1002 -30" -5.1" Add MW 6L 575 152 X SS-70-1-06/72011 6/12 1099 1002 -30" -5.1" Add MW 6L 1672 893 X SS-70-1-06/72011 6/12 1094 1154 729.8 -6.3" SV MW 6L 1672 893 X Y SS-50-4-06/72011 6/12 1632 1302 -29.6 -6.4 SV MW 6L 1658 073 X 5 DUPS 06/72011 6/12 1632 1302 -29.6 -6.4 SV MW 6L 1658 073 X *SAMPLE MATRIX CODES SV = S01 Vapor Landing Counter SV				
2 DA-50-4-06[620 \$\langle 12 \langle 17 \langle 1006 \langle 1001 \rangle -30" \rangle -6.4" \ AA \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
3 DA-50-5-06[6201] 6/16 6/17 1009 100 Z -30" -51" AA MW 6L 575 152 X SS-70-1-06[7201] 6/17 6/17 1049 1119 -79.7 -54" SV MW 6L 1672 293 X SS-70-2-06[7201] 6/17 6/17 1024 1154 729.3 -63" SV MW 6L 1669 363 X SS-50-4-06[7201] 6/17 6/17 1232 1302 -29.6 -6.4 SV MW 6L 1658 073 X 5 DV \$506[7201] 6/17 6/17 — -71.9 -6.9 SV MW 6L 748 391 X **SAMPLE:MATRIX CODES SV:= S01. Vapor (Landth) Gairly (egibly) and completely. Significant of the solution of			Ad Ma 6L 801 131	
3 DA-50-5-06[620 6/16 1/7 1009 100 Z -30" -5:1" AA MW 6L 575 152 X SS-70-1-06 720 6/17 6/17 1049 1119 -79.7 -5:4" SV MW 6L 1672 293 X SS-70-2-06 770 6/17 6/17 1024 1154 729.3 -6:3" SV MW 6L 1669 363 X Y SS-50-4-06 770 6/17 6/17 1232 1302 -29.6 -6:4 SV MW 6L 1658 073 X 5 DV \$506 770 6/17 6/17	2 DA-50-4-0616201	6/2 9/17 1006 1001 -30" -6.4"	AA UW 64 686 192	X
\$\frac{\sqrt{1049}}{\sqrt{1049}} \frac{\left{119}}{\left{1701}} \frac{\sqrt{6/7}}{\sqrt{1049}} \frac{\left{119}}{\left{1701}} \frac{\sqrt{119}}{\sqrt{1701}} \frac{\sqrt{1701}}{\sqrt{1701}} \sqrt{17		116/	AA WW 6L 575 152	X
## \$5-50-4-061720\ 6/17 1232 1302 -29.6 -6.4 SV		1 . 1'	SV MW 61 1672 293	x
*SAMPLE MATRIX CODES SV = Soil Vapor/Landfill Gas/SVB Container Type Container Type Container Type Please print clearly legibly and completely, Samples can not be legged in and turn around lime clock will not start until any amble guilles are resolved. All samples seminated are subjects (Alpas S)	5-5-70-2-0617204		SV MW GL 1669 363	x
*SAMPLE MATRIX CODES SV = Soil Vapor/Landfill Gas/SVB Container Type Container Type Container Type Please print clearly legibly and completely, Samples can not be legged in and turn around lime clock will not start until any amble guilles are resolved. All samples seminated are subjects (Alpas S)	4 55-50-4-06170011	6/17 6/12 1832 1302 -29.6 - 6.4	SV MW 62 1658073	
*SAMPLE MATRIX CODES SV = Soil Vapor/Landfill Gas/SVB Container Type Container Type Container Type Please print clearly legibly and completely, Samples can not be legged in and turn around lime clock will not start until any amble guilles are resolved. All samples seminated are subjects (Alpas S)	5 Dup 55 06172011	6/1 6/17	SU MW GL 748 391	
Other Please Specify	\sim	A= Amoteni An (macon odigoti)		
Received By: Date/Time: Clock will not start unit land with the control of the co			Container Type	completelys Samples can not be
	M	Refinquished By: Date/Time	Received By:	ate/Time: clockwillingt start until any amb
		THE PY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	John Ware affiff	Torme and Conditions
Form No: 101-02 (19-Jun-09) Pet Celue 6/20/17 (1174) Pot Celue 6/20/11 850 Secrete session 8	Form No: 101-02 (19-Jun-09)	2 /4/17/11/14	Let alue didi 73	Sa Secretaria sina

Page 56 of 60

	Form														1		E A	· · · · · · · · · · · · · · · · · · ·	 율	0	Email:	S Fax:	eria Phone:	_No	OAddress:	0511 유	113:0 <u>Ω</u>		320	
Boun of	Form No: 101-02 (19-Jun-09)		Lik		SAMPLE MAIIRIX CODES		CON 925 FC - 781	Con 643 FC 359	Can 1619 FC 729	CON LAYO FC 286	Con 947 FC 071	Con 1688 FC 326	Can Ibal FC 149	Can 648 FC 129	Con 1592 FC 168	Can 959 FC 248	PHA Lab (D) b Use (Qn)y) Sample ID	All C	Other Project Specific Requirements/Comments:	These samples have been previously analyzed by Alpha			16:		285;	client Arcadis	Client Information	TEL: 508-822-9300 FAX: 508-822-3288	320 Forbes Blvd Mansfield MA 02048	AIRA
Ama	>	Chut	val.	Relinquished By:	k≅ Soil Vapor/Landfill Cas/SVE her=Please Specify	V==Ambien Au (Indoor/Outdoor	(6/13/11	COTTECTION Initial Date Start Time End Time Vacuum	Columns Belo	ents:	Date Due:	☐ Standard ☐ RUSH (c		Turn-Around Time	ALPHA Quote #:	Project Manager:	Project #:	Project Location: (Jn. f.) 15+ SU	Project Name:	Project Information	AIR ANALYSIS
	119/11/05	L '	6/13/11 16:20 1	Date/Time			-79.4	-79.4 N	-29.4	-29.4	- <i>79.</i> Y	-79.Y	-29.4	-79.4	-29.4	-29.4 AA	Final Vacuum	Below Must Be F		Time:	□ RUSH (only confirmed if pre-approved!)		TI	_					1	PAGE 1 OF
Strange !	Penn Othle-		2 Bullet	へ)、 Beceiyed By:	Container Type											7	Sample Sampler's Can ID ID Matrix* Initials Size Can co	Filled Out		Bar. Pres 29.88			Report to: (If different than Project Manager)		☐ EMAIL (standard pdf report)	(Default based on Regulatory Criteria Indicated)	☐ ADEx Criteria Checker:	O FAX	Report Information - Data Deliverables	Date Recid in Lab:
1315	2501 11		6/13/11 /680														APH FIXED	GASES			ANALYSIS			State/Fed	Regulatory R	Indicated)		☐ Same as Client info	iverables Billing Information	ALPHA Job#
	Pa	Jerms and Conditions Sea reverse side	submitted are subject to Alphas C	clock-wilknot start untilkany ambi-	Please print clearly legibly and completely. Samples part not be completely.												Sample Comments (i.e. PID)	70.10			SIS			Program Criteria	Regulatory Requirements/Report Limits			nt info PO#:	nation	#

					99.32 Hallowell Sci	meriden unnick	Sezvensus	N Interference	Nation Section 5	NO STATE OF THE PARTY.	or encourage war	THE REPORT OF THE PARTY OF	AND THE COURT AND (A)	Col McTeVallebre	Alex Sou/Services Screen	era manornaco						Ser	ial l	No:	080	511	13:0	1		
Manny (Form No: 101-02 (19-Jun-09)		X S.		SAMPLE WATRIX CODES SV	(an 1587 HC.557)		Can ilulu FC 298	Con 686 FC 192	Can 901 FC 131	Can 589 FC. 367	Can 575 PC 152	Can 1711 FC 373	Can 1053 FC 147	Can 987 FC 500	Can 998 FC 077	ALPHA Lab (D) (Lab Use Only) Sample ID	All C	Other Project Specific Requirements/Comments:	☐ These samples have been previously analyzed by Alpha	Email:	OF Fax:	Phone:	No:(Address:	client: A(cad);	Client Information	TEL: 508-822-9300 FAX: 508-822-3288	es 💹	AIR AN
in their		What	BMI	Relinquished By:	SV = Soil Vapor/Landfill Gas/SVE Olne) = Please Specify	coobing (Lindoor/Outdoor)										6/13/11	COLLECTION Initial Date Start Time End Time Vacuum	All Columns Belo	ents:	Date Due:	☐ Standard ☐ RUSH ₀		Turn-Around Time	Al PHA Ounte #	Project Manager:	Project #:	Project Location: (In:Cirs+ SO)	Project Name:	Project Information	AIR ANALYSIS
6.14-	Cal 3/4 160	11/2/1/1655	(6/12)11 16:20	Date/Time		-C7.7	-100	-29.4	-19.4	-79.4	-2Q:4	-19.4	-29.4	-B.4	-19.4	-B7 A	Final Vacuum	st Be		Time:	☐ RUSH (only confirmed if pre-approved!)									PAGE_Z0F
max an	Marin Free		the Hilland	A . Received By:	Container Type		2	80								A	Sample Sampler's Can ID ID	Filled Out					Report to: (if different than Project Manager)	☐ Additional Deliverables:		(Default based on Regulatory Criteria Indicated)	☐ ADEx	O FAX	Report Information - Data Deliverables	Date Recidin Lab
6-14-11 1315	11/000	6 /13/11 lbsc	7620	Date/Time:			-										APH FIXED	GASES			ANALYSIS			State/Fed F	Regulatory Re	Indicated)		☐ Same as Client info	iverables Billing Information	ALPHAJob#
	Par	Terms and Conditions	guitesiare resolved. All samples of submitted are subject to Alpha's.	clock will pot start until any ambi-	Please print clearly (legibly, and completely. Samples can not be				-								Sample Comments (i.e. PID)	TO-10						State/Fed Program Criteria	ruirements/Report Limits			info PO#:	ation	

Manu	Form No: 101-02 (19-Jun-09)	Bridge Contraction of the Contra		*SAMBLE WATRIX CODES	Can WAS FC.300	Con 1565 FC 0SZ	Can 1672 FC 293	Con 1568 FC 295	Can 1669 FC353	6234 hhal uco	Can Kess FC 073	Con 748 FC 391	Can 742 FC 223	жи́РНА цар ID (Lab Use @n.v) Sample ID	All C		Other Project Specific Requirements/Comments:	These samples have been previously analyzed by Alpha	Email:	0 Fax:	æPhone:	- NG	Address:	Sclient: Arcadis	Client Information	_TEL 508-822-9300 FAX: 508-822-3288	320 Forbox Rivid Mansfield MA 02048	
a Store of	A Comment	Brit 6	Relinquished By:	N≡ Ambien An Indor Ondoor) = Sai Vaport andfit Gas SVI her = Please Specify	2	Z- \	7-2	2-	22-	2-	2-	2-	0/13/11	Date Start Time End Time Vacuum	Columns Below Must		ents:	Date Due: Time:	☐ Standard ☐ RUSH (only confirmed if pre-soproved)		Turn-Around Time	ALPHA Quote #:	Project Manager:	Project #:	Project Location: Un'Firs J SU	Project Name:	Project Information	AIR ANALYSIS PAGE 3
K	my to metall sometimes	13 11 16:70 1 26	Date/Time Received By:	Container Type		-79.4	-79.4 N	- P.92-	-79.4	-8.4	4.00	-79.4	-29.4 SU	itial Final Sample Sampler's Can uum Vacuum Matrix* Initials Size	lust Be Filled Out				if pre-approvedi)		Report to: (if different than Project Manager)	☐ Additional Deliverables:	☐ EMAIL (standard pdf report)		☐ ADEx Criteria Checker:	□ FAX	Report Information - I	3or Date Recidin Lab.
6-1411 1315	411 102	6/12/1 /600	Date/Time:											Can Controller O.T. APH FIXEL TO TO	SIM	S			ANALYSIS		Manager)	State/Fed		atory Criteria Indicated)		☐ Same as Client info	formation - Data Deliverables Billing Information	AlleHA Job #
	- Serilaversossue	Terms and Conditions On The Conditions On The Conditions On The Conditions On The Conditions	clock will not start until any amb-	Please print clearly ligibly and completely. Samples can not be logged in end turnsround time.	W6/3/4	a)								Sample Comments (i.e. PID)	(FO-10				SIS			Program Criteria	Regulatory Requirements/Report Limits			info PO#:	ation	

PRECLEANED CONTAINERS

only half seal on crate. Covering seam.

same as above

Appendix E

Preliminary Human Health Risk Evaluation Report

UniFirst Corporation

Appendix E

Human Health Risk Evaluation Report – Second Sampling Round

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

August 2011

Appendix E
Human Health Risk Evaluation
Report – Second Sampling
Round

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

Prepared for:
UniFirst Corporation

Prepared by: ARCADIS U.S., Inc. 482 Congress Street Suite 501 Portland Maine 04101 Tel 207.828.0046 Fax 207.828.0062

Our Ref.:

MA000989.0002

Date:

August 2011

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	Introdu	ction	1
2.	Compa	rison to Acute Exposure Criteria	1
3.	Risk Ev	aluation	2
4.	Current	Results	4
	4.1	Current Resident (Short-Term)	4
	4.2	Current Resident (Long-Term)	4
5.	Combin	ed Results	5
	5.1	Current Resident (Short-Term)	5
	5.2	Current Resident (Long-Term)	5
6.	Conclus	sions and Recommendations	6
7.	Referen	ces	7
Tak	oles		
	Table 1	Acute and Occupational Exposure Criteria for COPCs Detected in Indoor Air	
	Table 2	Residential Indoor Air and Sub-slab Soil Vapor Data with Attenuation Factors	
	Table 3	Exposure Assumptions for the Estimation of Risks from Inhalation of Volatile Constituents in Indoor Air for a Resident	
	Table 4	Estimated Risks to a Resident from Short Term Exposure to Volatile Constituent in Indoor Air via Inhalation	ts
	Table 5	Estimated Risks to a Resident from Long Term Exposure to Volatile Constituent in Indoor Air via Inhalation	S
	Table 6	Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation – Combined Results	
	Table 7	Estimated Risks to a Resident from Long Term Exposure to Volatile Constituents in Indoor Air via Inhalation – Combined Results	

A Risk Tables

Attachment

ROUND 2 - HHRE Report_Residence South FINAL.doc

Appendix E
Human Health Risk
Evaluation Report –
Second Sampling Round

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

1. Introduction

ARCADIS has prepared a preliminary human health risk assessment based upon validated indoor air data presented in Table 1 of the Indoor Air Quality and Vapor Intrusion Assessment: Report of Second Sampling Round Results, Residence, Parcel 26/05/05 – South, Wells from samples collected on June 16-17, 2011 at the southern half of the residential duplex at Woburn Parcel Number 26/05/05 (the Residence). The list of compounds of potential concern (COPCs) is in accordance with Table 1 of the *Indoor Air Quality and Vapor Intrusion Assessment Scope of Work* (SOW) (The Johnson Company [JCO] 2010a) submitted to the United States Environmental Protection Agency (USEPA) by JCO on behalf of the UniFirst Corporation in March 2010 and Table 2 of *Indoor Air Quality and Vapor Intrusion Assessment: Report of Results* (IAQA/VI) (JCO 2010b). COPCs that were detected in any indoor air sample were considered in the risk assessment.

2. Comparison to Acute Exposure Criteria

In order to screen for potential near-term human health hazards, indoor air data from June 2011 were compared to two sets of acute exposure criteria, including Acute Minimal Risk Levels (MRLs) and Acute Exposure Guideline Levels (AEGLs). In addition, indoor air data were compared to occupational criteria, including Permissible Exposure Limits (PELs) and Threshold Limit Values (TLVs®) (Table 1). Acute inhalation MRLs are derived by the Agency for Toxic Substances and Disease Registry (ATSDR) for noncarcinogenic effects from exposures lasting 14 days or less. AEGLs are set by USEPA for infrequent or one-time exposures to airborne compounds. An eight-hour AEGL-1 represents a level above which it is expected that the general population could experience significant but reversible irritation or discomfort. PELs are federal standards enforceable by the Occupational Safety and Health Administration (OSHA) for an eight-hour time-weighted average occupational exposure. TLVs® are eight-hour time-weighted averages proposed by the American Conference of Governmental Industrial Hygienists (ACGIH) for occupational hazard assessment. If no acute exposure criteria or occupational criteria were available for a given compound, surrogate values were used where appropriate (Table 1). Comparisons were based on individual samples (i.e., assuming that an individual person would consistently remain at the sample location throughout the relevant exposure period).

No June 2011 result exceeded acute exposure criteria. Thus, acute indoor air exposures to the COPCs would not pose significant risks of harm to human health.

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

3. Risk Evaluation

Indoor air and outdoor air samples were collected at the Residence on June 16 and 17, 2011. Subslab soil vapor samples were collected on June 17, 2011. The indoor air samples were collected at two locations in the basement of the Residence. Analytical results indicate that 13 constituents were detected in indoor air (Table 2). Of these 13 constituents, 1,2-dichloroethane, 1,2-dichloropropane, 1,3-butadiene, benzene, bromodichloromethane, ethylbenzene, toluene, and xylenes were detected only in indoor air and not in sub-slab soil vapor, indicating that concentrations detected were associated with background sources. Five of the 13 constituents detected in indoor air were detected in sub-slab soil vapor, including 1,2,4-trimethybenzene, carbon tetrachloride, chloroform, naphthalene, and tetrachloroethene (Table 2). Carbon tetrachloride and naphthalene were detected at nearly equivalent concentrations in both indoor and outdoor air, indicating that the indoor detected concentrations may be associated with background sources. Calculated attenuation factors (AF) were close to or greater than 1.0 for 1,2,4-trimethylbenzene, carbon tetrachloride, chloroform, and naphthalene, indicating these compounds were detected at greater concentrations in indoor air than sub-slab soil vapor and are therefore primarily associated with background sources. The calculated AF for tetrachloroethene (PCE) was 0.27, also indicating potential contributions from a background source.

During pre-sampling activities, ARCADIS staff conducted a building survey to document building conditions and products that were found in the basement of the Residence. The first and second floors of the Residence were included in a limited building survey and the tenants of the Residence were not available at the time of sampling to be interviewed. Additional background sources therefore may have been present. The following potential background sources were identified during the survey:

- Cleaning products containing bleach were noted in the home during the site visit, which may be a source of chloroform via reactions with other cleaning products (Odabasi 2008).
- Various other cleaning products and aerosols were also noted.

Risks from inhalation of volatile organic compounds in indoor air were estimated for a current resident for both long- and short-term exposures. Exposure assumptions were based on current USEPA guidance (USEPA 2009) (Table 3).

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

3

In accordance with USEPA guidance, long-term exposure was defined as 30 years for a current resident. The short-term exposure was performed for a five-year exposure in accordance with Massachusetts Department of Environmental Protection (MADEP) guidance for Imminent Hazard (IH) evaluations to determine if an IH condition existed as defined in the Massachusetts Contingency Plan (MCP) (MADEP 2008a). As specified in the MCP, the IH evaluation was performed for current use receptors: current residents.

For each constituent, the exposure point concentration in indoor air is equal to the average concentration of the indoor air results. Residents were assumed to be present 24 hours per day in the building. Exposure parameters for each scenario are presented in Table 3.

Risks were estimated according to USEPA (2009) guidance and the MCP (MADEP 2008a). Volatile organic compounds in indoor air were not considered to pose significant cumulative risk to human health within or below the USEPA Superfund target excess lifetime cancer risk range of 1x10⁻⁶ to 1x10⁻⁴ for potential carcinogenic effects and a target Hazard Index (HI) of 1 for potential noncarcinogenic effects. The criteria applicable to the MADEP IH evaluation are a target excess lifetime cancer risk of 1x10⁻⁵ for potential carcinogenic effects and a target HI of 1 for potential noncarcinogenic effects.

The risk assessment was executed on all constituents that were detected in at least one indoor air sample, including several constituents that have been demonstrated *not* to be site-related. Carbon tetrachloride and naphthalene were detected at similar concentrations in outdoor air compared to indoor air. 1,2-Dichloroethane, 1,2-dichloropropane,1,3-butadiene, benzene, bromodichloromethane, ethylbenzene, toluene, and xylenes were not detected in any sub-slab soil vapor sample. 1,2,4-Trimethylbenzene, carbon tetrachloride, chloroform, and naphthalene were detected at similar or higher concentrations in indoor air compared to sub-slab soil gas. 1,2,4-Trimethylbenzene, benzene, chloroform, ethylbenzene, toluene, and xylenes were also detected in outdoor air, so ambient air may have contributed to background concentrations. These constituents are present as a result of sources within the building and are not within the scope of a release to the environment addressed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

Risks from an initial sampling event at this property (April 21-22, 2011) were presented in Appendix E of the Indoor Air Quality and Vapor Intrusion Assessment: Report of

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

Results submitted to USEPA on May 23, 2011. To evaluate potential risks over both the initial and current sampling event, risks were calculated considering chemicals detected in indoor air from both the initial sampling event (April 2011) and the second round of sampling (June 16 and 17, 2011). Any constituent that was detected in either the April or June in indoor air sampling was included in the combined risk calculation. Risks were estimated using the average concentration from both sampling rounds. Risks associated with both data sets are referred to as "Combined Results" below.

4. Current Results

No indoor air sample exceeded acute exposure criteria or occupational criteria, and acute indoor air exposures to the COPCs are not estimated to pose significant risks to human health.

4.1 Current Resident (Short-Term)

As presented in Table 4, the cumulative estimated lifetime cancer risks for a short-term (five-year) exposure period to a current resident exposed to the average concentrations of COPCs detected in indoor air in the Residence did not exceed the MADEP IH target risk level of 1x10⁻⁵ (Table 4). Cumulative non-cancer hazards are equal to 0.4 for this exposure scenario. No IH condition as defined by the MCP was found to exist at the Residence for the short-term resident exposure scenario.

All risks for exposure to COPCs in indoor air were within the Superfund target excess lifetime cancer risk range of 1x10⁻⁶ to 1x10⁻⁴ and no individual chemical risk exceeded 3x10⁻⁶ (Table 4). It should be noted that 34% of the risk was due to exposure to constituents that were not detected in any sub-slab soil vapor sample – 1,2-dichloroethane, 1,2-dichloropropane, 1,3-butadiene, benzene, bromodichloromethane, and ethylbenzene. Additionally, 41% of risk was due to chloroform, which was detected at higher concentrations in indoor air than sub-slab soil vapor. Risks associated with PCE only account for 11% of the total risk, or an estimated risk level of 8x10⁻⁷. Based on a comparison of concentrations for both the north and south sides of the duplex, background sources of PCE (dry-cleaned clothes) are likely contributing to this risk level (Magee et al. 2008).

4.2 Current Resident (Long-Term)

Cumulative estimated cancer risks for a long-term (30-year) exposure period to a current resident exposed to the average concentrations of COPCs detected in indoor

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

5

air were within the Superfund target excess lifetime cancer risk range of 1x10⁻⁶ to 1x10⁻⁴ (Table 5). Cumulative non-cancer hazards are equal to 0.4 for this exposure scenario. Constituents not detected in sub-slab soil vapor (1,2-dichloroethane, 1,2-dichloropropane, 1,3-butadiene, benzene, bromodichloromethane, and ethylbenzene) make up 34% of the total risk, and chloroform accounts for 41% of total risk. The risk associated with exposure to PCE in indoor air is 5x10⁻⁶ for the long term current resident. This constitutes 11% of the total risk for the long term resident. Background sources of PCE are likely contributing to this risk level.

5. Combined Results

The results from the April 2011 and June 2011 data were combined to determine the potential overall risk from exposure to constituents detected in indoor air.

5.1 Current Resident (Short-Term)

Table 6 presents the results of the combined indoor air data evaluation. The cumulative estimated lifetime cancer risks for current resident exposed to the COPCs for short-term (5-year) exposure period did not exceed the MADEP IH target risk level of 1x10⁻⁵ (Table 6). Non-cancer hazards for the combined results are equal to 0.3 for this exposure scenario. No IH condition as defined by the MCP was found to exist at the Residence for the short-term resident exposure scenario.

All risks to COPCs in indoor air from the combined results were within the Superfund target excess lifetime cancer risk range of 1x10⁻⁶ to 1x10⁻⁴ and no individual chemical risks exceeded 2x10⁻⁶ (Table 6). It should be noted that the majority of risk (64%) from the combined results was due to exposure to 1,2-dichloroethane, chloroform, and naphthalene which are likely to be present in indoor air from background sources. Risks associated with PCE only account for 15% of the total risk, or an estimated risk level of 8x10⁻⁷ over both events.

5.2 Current Resident (Long-Term)

Cumulative estimated cancer risks for a long-term (30-year) exposure period to a current resident exposed to combined results in indoor air were within the Superfund target excess lifetime cancer risk range of 1x10⁻⁶ to 1x10⁻⁴ (Table 7). All non-cancer hazards are equal to 0.3 for this exposure scenario (Table 7). 1,2-Dichloroethane, chloroform, and naphthalene continue to drive the estimated risk level, making up 64%

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

of risk. The risk associated with exposure to PCE in indoor air from the combined results is $5x10^{-6}$ for the long term current resident.

6. Conclusions and Recommendations

In the June 2011 sampling round, no indoor air sample exceeded acute exposure criteria or occupational criteria, and acute indoor air exposures to the COPCs are not estimated to pose significant risks to human health. Cumulative estimated carcinogenic and noncarcinogenic risks for current residents did not exceed target risk levels for a short-term (five-year) exposure period. No IH condition as defined by the MCP was found to exist at the Residence.

Long term estimated excess lifetime carcinogenic risks for current residents (30 years) are all within the Superfund target excess lifetime cancer risk range of 1x10⁻⁶ to 1x10⁻⁴ considering average indoor air concentrations and do not exceed 5x10⁻⁵ under any exposure scenario. All non-cancer HIs are below 1. All supporting risk assessment tables are provided in Attachment A.

PCE was detected in the June 2011 sampling round at low levels (1.82 to 2.34 $\mu g/m^3$) that are consistent with background sources in residences throughout the United States. USEPA's indoor air background database reported a 50th percentile value of 0.7 $\mu g/m^3$, a 75th percentile value of 1.4 $\mu g/m^3$ and a 90th percentile value of 3.8 $\mu g/m^3$ for PCE (Dawson 2008). The potential carcinogenic risk level estimated for the low levels of PCE detected in the Residence is 5×10^{-6} for long-term exposure, a level of risk within USEPA's risk range for Superfund sites. The estimated total long-term risk, including exposure to other compounds in the Residence originating from background sources (i.e., *not* site related), is 5×10^{-5} . The PCE concentrations measured in the Residence are above the MADEP (2008b) Threshold Value (TV) for PCE (1.4 $\mu g/m^3$), but based on the calculated AF a background source is likely present (Magee et al. 2008).

The risk evaluation of the combined data confirms the results reported above and in the previous (May 23, 2011) human health risk assessment. Using all the data, the overall risk level was similar to the current data set. In all cases, background constituents are the primary risk driver in indoor air (see Section 3.3 of the Indoor Air and Vapor Intrusion Assessment). In contrast, PCE only accounts for a small percentage (11-15%) of the overall risk level. Concentrations of background constituents detected in indoor air were slightly higher in the June 2011 samples than in the April 2011 samples. PCE concentrations in indoor air and sub-slab soil vapor

Residence, Parcel 26/ 05/ 05 – South Wells G&H Superfund Site Woburn, Massachusetts

were similar in both events. The average indoor air PCE concentration was 1.96 μ g/m³ for the April 2011 sampling event and 2.08 μ g/m³ for the June 2011 sampling event.

7. References

- Dawson, Helen. 2008. Background Indoor Air Concentrations of Volatile Organic Compounds in North American Residences. Literature Review & Implications for Vapor Intrusion Assessment. Vapor Intrusion Workshop AEHS Spring 2008, San Diego, California.
- Magee, B., I. Penn, G. Logoni and S. Livio. 2008. Typical Levels of Tetrachloroethylene and Trichloroethylene in Residential Indoor Air. CONSOIL Conference. Milan, Italy.
- Massachusetts Department of Environmental Protection (MADEP). 2008a.

 Massachusetts Contingency Plan, 310 CMR 40.0000. Bureau of Waste Site Cleanup. February.
- MADEP. 2008b. Indoor Air Threshold Values for the Evaluation of a Vapor Intrusion Pathway, Technical Update, Draft. June 26.
- Odabasi, M. 2008. Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-Containing Household Products. Environ. Sci. Technol. 42:1445-1451.
- The Johnson Company (JCO). 2010a. Indoor Air Quality and Vapor Intrusion Assessment Scope of Work, Revision 2, UniFirst Property, Wells G&H Superfund Property. March 25.
- JCO. 2010b. Indoor Air Quality and Vapor Intrusion Assessment Report of Results, UniFirst Property, Wells G&H Superfund Property. June 18.
- United States Environmental Protection Agency (USEPA). 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Office of Superfund Remediation and Technology Innovation. EPA-540-R-070-002. January.

Table 1. Acute and Occupational Exposure Criteria for COPCs Detected in Indoor Air

Company	ATSDR	USEPA	OSHA	ACGIH
Compound	MRL	AEGL	PEL	TLV
1,2,4-Trimethylbenzene	NA	2.21E+05	NA	1.23E+05
1,2-Dichloroethane	NA	NA	2.02E+05	NA
1,2-Dichloropropane	3.35E+02	NA	3.50E+05	6.70E+04
1,3-Butadiene	2.21E+02	1.48E+06	2.21E+03	4.42E+03
Benzene	2.87E+01	2.87E+04	3.19E+04	1.60E+03
Bromodichloromethane	NA	NA	NA	NA
Carbon tetrachloride	NA	1.20E+05	6.30E+04	3.15E+04
Chloroform	4.87E+02	1.41E+05	2.40E+05	4.87E+04
Ethylbenzene	4.34E+04	1.43E+05	4.35E+05	4.34E+05
Naphthalene	NA	NA	5.00E+04	5.24E+04
Tetrachloroethene	1.36E+03	2.38E+05	6.79E+05	1.70E+05
Toluene	3.76E+03	7.53E+05	7.53E+05	7.53E+04
Xylenes	8.67E+03	5.64E+05	4.35E+05	4.34E+05

Notes:

All levels in µg/m³. Levels reported in parts per million (ppm) were first converted to mg/m³: (level in ppm)*(molecular weight)/24.45.

COPC = compound of potential concern

NA = value not available

ATSDR MRL = Agency for Toxic Substances and Disease Registry Minimum Risk Level (acute inhalation exposure)

USEPA AEGL = US Environmental Protection Agency Acute Exposure Guideline Level (8-hour AEGL 1; AEGL 2 if AEGL 1 not reported).

OSHA PEL = Occupational Safety and Health Administration Permissible Exposure Limits (29 CFR 1910 Subpart Z)

ACGIH TLV = American Conference of Governmental Industrial Hygienists Threshold Limit Value® (time-weighted average)

Table 2. Residential Indoor Air and Sub-slab Soil Vapor Data with Attenuation Factors

Sample Name: Location: Date Collected:	Units	IA-4 Basement 6/17/2011	IA-5 Basement 6/17/2011	Average Detected Concentration in Indoor Air	SS-4 Sub-Slab 6/17/2011	SS-5 Sub-Slab 6/17/2011	Average Detected Concentration Sub- Slab Soil Vapor	OA-1 Outdoor 6/17/2011	Average Attenuation Factor (a)
1.1.1-Trichloroethane	μg/m ³	0.109 U	0.109 U	ND	0.153 [0.147]	0.109 U	0.15	0.109 U	NA
1.1.2-Trichloroethane		0.109 U	0.109 U	ND ND	0.109 U [0.109 U]	0.109 U	0.15 ND	0.109 U	NA NA
1.1-Dichloroethane	μg/m ³	0.109 U 0.081 U	0.109 U 0.081 U	ND ND	0.081 U [0.081 U]	0.109 U 0.081 U	ND ND	0.109 U 0.081 U	NA NA
1.1-Dichloroethene	μg/m ³ μg/m ³	0.081 U	0.081 U 0.079 U	ND ND	0.079 U [0.079 U]	0.081 U	ND ND	0.081 U	NA NA
1.2.4-Trimethylbenzene	μg/m ³	0.079 0	0.079 0	0.57	0.359 [0.128]	0.079 0	0.20	0.079 0	2.81
1,2,4-1 rimethylbenzene 1,2-Dibromoethane	μg/m ³	0.565 0.154 U	0.575 0.154 U	0.57 ND	0.359 [0.128] 0.154 U [0.154 U]	0.16 0.154 U	0.20 ND	0.226 0.154 U	2.81 NA
1.2-Dibromoethane	μg/m ³	0.154 0	0.154 0	0.714	0.081 U [0.081 U]	0.154 U 0.081 U	ND ND	0.154 U	NA NA
,		0.716	0.102				ND ND	0.081 U	NA NA
1,2-Dichloropropane	μg/m ³			0.0995	0.092 U [0.092 U]	0.092 U	+		NA NA
1,3-Butadiene	μg/m ³	0.124 J	0.137 J	0.1305	0.044 UJ [0.044 UJ]	0.044 UJ	ND	0.044 UJ	
1,3-Dichlorobenzene	μg/m ³	0.12 U	0.12 U	ND	0.12 U [0.12 U]	0.12 U	ND	0.12 U	NA
1,4-Dichlorobenzene	μg/m ³	0.12 U	0.12 U	ND 0.504	0.12 U [0.12 U]	0.12 U	ND	0.12 U	NA
Benzene	μg/m ³	0.585	0.543	0.564	0.224 U [0.224 U]	0.224 U	ND	0.249	NA
Bromodichloromethane	μg/m ³	0.161	0.154	0.1575	0.134 U [0.134 U]	0.134 U	ND	0.134 U	NA
Bromoform	μg/m ³	0.207 U	0.207 U	ND	0.207 U [0.207 U]	0.207 U	ND	0.207 U	NA
Carbon Tetrachloride	μg/m ³	0.491	0.484	0.4875	0.157 [0.151]	0.33	0.24	0.472	2.03
Chlorobenzene	μg/m ³	0.092 U	0.092 U	ND	0.092 U [0.092 U]	0.092 U	ND	0.092 U	NA
Chloroform	μg/m ³	1.97	2	1.985	0.469 [0.171]	0.30	0.31	0.107	6.42
cis-1,2-Dichloroethene	μg/m ³	0.079 U	0.079 U	ND	0.079 U [0.079 U]	0.079 U	ND	0.079 U	NA
Ethylbenzene	μg/m ³	1.8	1.84	1.82	0.087 U [0.087 U]	0.087 U	ND	0.13	NA
Isopropylbenzene	μg/m ³	2.46 U	2.46 U	ND	2.46 U [2.46 U]	2.46 U	ND	2.46 U	NA
Methylene Chloride	μg/m ³	1.74 U	1.74 U	ND	1.74 U [1.74 U]	1.74 U	ND	2.76 U	NA
Methyl tert-butyl ether	μg/m ³	0.072 U	0.072 U	ND	0.072 U [0.072 U]	0.072 U	ND	0.072 U	NA
Naphthalene	μg/m ³	0.351 J	0.383 J	0.367	0.419 J [0.262 UJ]	0.262 UJ	0.42	0.304 J	0.88
Tetrachloroethene	μg/m³	1.82	2.34	2.08	13.6 [14]	1.71	7.76	0.136 U	0.27
Toluene	μg/m³	15.5	16.7	16.1	0.584 U [0.316 U]	0.441 U	ND	1.27	NA
trans-1,2-Dichloroethene	μg/m³	0.079 U	0.079 U	ND	0.079 U [0.079 U]	0.079 U	ND	0.079 U	NA
trans-1,3-Dichloropropene	μg/m³	0.091 U	0.091 U	ND	0.091 U [0.091 U]	0.091 U	ND	0.091 U	NA
Trichloroethene	μg/m³	0.107 U	0.107 U	ND	0.107 U [0.107 U]	0.107 U	ND	0.107 U	NA
Vinyl Chloride	μg/m³	0.051 U	0.051 U	ND	0.051 U [0.051 U]	0.051 U	ND	0.051 U	NA
Xylenes (total)	μg/m³	3.7	3.71	3.705	0.261 U [0.261 U]	0.261 U	ND	0.491	NA

Notes

(a) Attenuation Factor calculated as the ratio of the average detected indoor air to average detected sub-slab soil vapor concentration

U - Constituent not detected

μg/m³ - Micrograms per cubic meter

IA - Indoor air sample

OA - Ambient air sample

SS - Sub-slab soil vapor sample

NA - Not applicable

ND - Not detected

Table 3. Exposure Assumptions for the Estimation of Risks from Inhalation of Volatile Constituents in Indoor Air for a Resident

Parameter	Units	Re	esident – Sh	ort Term	Resident – Long Term		
	Ointo	Value	Source	Comment	Value	Source	Comment
Exposure Time	hours/day	24	(a)		24	(a)	
Exposure Frequency	days/year	350	(a)		350	(a)	
Exposure Duration	years	5	(b)		30	(a)	
Averaging Time – Cancer	hours	613200	(a)		613200	(a)	
Averaging Time – Non-Cancer	hours	262800	(a)		262800	(a)	

Notes:

- (a) USEPA 2009
- (b) MADEP 2008a

Table 4. Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	5
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	43800
CF	Conversion Factor	ug/mg	1000

	EPC (a)					Cancer Risk	HI	% of Total	% of Total
	Indoor Air	RfC	URF	ADE-c	ADE-nc	Indoor Air	Indoor Air	Cancer Risk	Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	5.70E-04	0.007	NA	NA	5.47E-04	NA	0.08	NA	21%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	7.14E-04	2.4	0.000026	4.89E-05	6.85E-04	1E-06	0.0003	17%	0%
1,2-Dichloropropane	9.95E-05	0.004	0.00001	6.82E-06	9.54E-05	7E-08	0.02	1%	6%
1,3-Butadiene	1.31E-04	0.002	0.00003	8.94E-06	1.25E-04	3E-07	0.1	4%	17%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	0.8	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.64E-04	0.03	0.0000078	3.86E-05	5.41E-04	3E-07	0.02	4%	5%
Bromodichloromethane	1.58E-04	NA	0.000037	1.08E-05	NA	4E-07	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.88E-04	0.1	0.000006	3.34E-05	4.67E-04	2E-07	0.005	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.99E-03	0.098	0.000023	1.36E-04	1.90E-03	3E-06	0.02	41%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.82E-03	1	0.0000025	1.25E-04	1.75E-03	3E-07	0.002	4%	0%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	3.67E-04	0.003	0.000034	2.51E-05	3.52E-04	9E-07	0.1	11%	32%
Tetrachloroethene	2.08E-03	0.27	0.0000059	1.42E-04	1.99E-03	8E-07	0.007	11%	2%
Toluene	1.61E-02	5	NA	NA	1.54E-02	NA	0.003	NA	1%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	3.71E-03	0.1	NA	NA	3.55E-03	NA	0.04	NA	10%
Total						8E-06	0.4	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

mg/m3 - milligram per cubic meter

Table 5. Estimated Risks to a Resident from Long Term Exposure to Volatile Constituents in Indoor Air via Inhalation

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	30
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	262800
CF	Conversion Factor	ug/mg	1000

	EPC (a) Indoor Air	RfC	URF	ADE-c	ADE-nc	Cancer Risk Indoor Air	HI Indoor Air	% of Total Cancer Risk	% of Total Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND ND	NA	0.000016	ND	ND	ND ND	ND	NA NA	NA NA
1.1-Dichloroethane	ND ND	NA NA	0.000016	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
1.1-Dichloroethene	ND ND	0.2	NA	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
1,2,4-Trimethylbenzene	5.70E-04	0.2	NA NA	NA NA	5.47E-04	NA NA	0.08	NA NA	21%
1.2-Dibromoethane	0.70L-04 ND	0.007	0.0006	ND	ND	ND	ND	NA NA	NA
1.2-Dichloroethane	7.14E-04	2.4	0.0000	2.93E-04	6.85E-04	8E-06	0.0003	17%	0.08%
1,2-Dichloropropane	9.95E-05	0.004	0.000020	4.09E-05	9.54E-05	4E-07	0.0003	0.9%	6%
1,2-Dichioroproparie	9.95E-05 1.31E-04	0.004	0.00001	5.36E-05	1.25E-04	2E-06	0.02	0.9% 4%	17%
1.3-Dichlorobenzene	ND	0.002	0.00003 NA	0.30E-03	ND	ND	ND	NA	NA
1.4-Dichlorobenzene	ND ND	0.2	0.000011	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
Benzene	5.64E-04	0.03	0.000011	2.32E-04	5.41E-04	2E-06	0.02	4%	5%
Bromodichloromethane	1.58E-04	NA	0.0000078	6.47E-05	NA	2E-06	NA	5%	NA
Bromoform	ND	NA NA	0.000037	ND	ND ND	ND	ND ND	NA	NA NA
Carbon tetrachloride	4.88E-04	0.1	0.0000011	2.00E-04	4.67E-04	1E-06	0.005	3%	1%
Chlorobenzene	4.00E-04 ND	0.1	0.000006 NA	ND	4.07E-04 ND	ND	0.005 ND	NA	NA
Chloroform	1.99E-03	0.03	0.000023	8.16E-04	1.90E-03	2E-05	0.02	41%	5%
cis-1,2-Dichloroethene	1.99E-03 ND	0.096	0.000023 NA	0.10E-04 ND	1.90E-03	2E-05 ND	0.02 ND	NA	NA
Ethylbenzene	1.82E-03	1	0.0000025	7.48E-04	1.75E-03	2E-06	0.002	1NA 4%	0.5%
,	1.82E-03 ND	0.4	0.0000025 NA	7.48E-04 ND	1.75E-03 ND	2E-06 ND	0.002 ND	4% NA	0.5% NA
Isopropylbenzene	ND ND	1	0.00000047	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
Methylene chloride	ND ND	3	0.00000047	ND ND	ND ND	ND ND		NA NA	NA NA
Methyl tert butyl ether		_					ND		
Naphthalene	3.67E-04	0.003	0.000034	1.51E-04	3.52E-04	5E-06	0.1	11%	32%
Tetrachloroethene	2.08E-03	0.27	0.0000059	8.55E-04	1.99E-03	5E-06	0.007	11%	2%
Toluene	1.61E-02	5	NA	NA	1.54E-02	NA	0.003	NA	0.8%
trans-1,2-Dichloroethene	ND	0.06	NA 0.000004	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA 1007
Xylenes	3.71E-03	0.1	NA	NA	3.55E-03	NA	0.04	NA	10%
Total						5E-05	0.4	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

mg/m3 - milligram per cubic meter

Table 6. Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Combined Results

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	5
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	43800
CF	Conversion Factor	ug/mg	1000

	EPC (a) Indoor Air	RfC	URF	ADE-c	ADE-nc	Cancer Risk Indoor Air	HI Indoor Air	% of Total Cancer Risk	% of Total Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND ND	NA	0.000016	ND	ND	ND ND	ND	NA NA	NA NA
1.1-Dichloroethane	ND ND	NA	0.000016	ND	ND	ND ND	ND	NA NA	NA NA
1.1-Dichloroethene	ND ND	0.2	NA	ND	ND	ND ND	ND	NA NA	NA NA
1,2,4-Trimethylbenzene	3.76E-04	0.007	NA NA	NA NA	3.60E-04	NA NA	0.05	NA NA	19%
1.2-Dibromoethane	ND	0.007	0.0006	ND	ND	ND	ND	NA NA	NA
1.2-Dichloroethane	4.18E-04	2.4	0.0000	2.86E-05	4.01E-04	7E-07	0.0002	13%	0.06%
1,2-Dichloropropane	7.29E-05	0.004	0.000020	4.99E-06	6.99E-05	5E-08	0.02	0.9%	6%
1.3-Butadiene	1.32E-04	0.004	0.00001	9.05E-06	1.27E-04	3E-07	0.02	5%	23%
1.3-Dichlorobenzene	ND	0.002	0.00003 NA	9.03L-00	ND	ND	ND	NA	NA
1.4-Dichlorobenzene	ND	0.8	0.000011	ND	ND	ND	ND	NA NA	NA NA
Benzene	5.19E-04	0.03	0.000071	3.56E-05	4.98E-04	3E-07	0.02	5%	6%
Bromodichloromethane	1.12E-04	NA	0.000037	7.69E-06	NA	3E-07	NA	5%	NA
Bromoform	ND	NA	0.000001	ND	ND	ND	ND.	NA	NA NA
Carbon tetrachloride	4.18E-04	0.1	0.0000011	2.86E-05	4.01E-04	2E-07	0.004	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.45E-03	0.098	0.000023	9.92E-05	1.39E-03	2E-06	0.01	41%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND ND	ND	NA	NA
Ethylbenzene	1.06E-03	1	0.0000025	7.29E-05	1.02E-03	2E-07	0.001	3%	0.4%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA NA	NA NA
Methyl tert butyl ether	ND	3	0.000000017	ND	ND	ND	ND	NA NA	NA NA
Naphthalene	2.31E-04	0.003	0.000034	1.58E-05	2.21E-04	5E-07	0.07	10%	27%
Tetrachloroethene	2.02E-03	0.27	0.0000059	1.38E-04	1.94E-03	8E-07	0.007	15%	3%
Toluene	9.57E-03	5	NA	NA	9.17E-03	NA	0.002	NA	0.7%
trans-1.2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA NA	NA NA
Trichloroethene	ND	NA	0.000001	ND	ND	ND	ND	NA NA	NA NA
Vinvl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA NA	NA NA
Xylenes	2.20E-03	0.1	NA	NA	2.11E-03	NA	0.02	NA	8%
Total						6E-06	0.3	100%	100%

$$ADE = rac{EPC_{air} imes ET imes EF imes ED}{AT}$$
 $HI_{inh} = rac{ADE}{RfC}$
 $Risk = ADE imes URF imes CF$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

mg/m3 - milligram per cubic meter

Table 7. Estimated Risks to a Resident from Long Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Combined Results

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	30
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	262800
CF	Conversion Factor	ug/mg	1000

Compound 1,1,1-Trichloroethane	Indoor Air (mg/m3)	RfC (mg/m3)	URF 1/(ug/m3)	ADE-c	ADE-nc				
		(mg/m3)	1//ua/m2\		ADL-IIC	Indoor Air	Indoor Air	Cancer Risk	Noncancer HI
1,1,1-Trichloroethane	ND		i/(ug/iiiə)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND								
	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	3.76E-04	0.007	NA	NA	3.60E-04	NA	0.05	NA	19%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	4.18E-04	2.4	0.000026	1.72E-04	4.01E-04	4E-06	0.0002	13%	0.06%
1,2-Dichloropropane	7.29E-05	0.004	0.00001	2.99E-05	6.99E-05	3E-07	0.02	0.9%	6%
1,3-Butadiene	1.32E-04	0.002	0.00003	5.43E-05	1.27E-04	2E-06	0.06	5%	23%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	0.8	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.19E-04	0.03	0.0000078	2.13E-04	4.98E-04	2E-06	0.02	5%	6%
Bromodichloromethane	1.12E-04	NA	0.000037	4.61E-05	NA	2E-06	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.18E-04	0.1	0.000006	1.72E-04	4.01E-04	1E-06	0.004	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.45E-03	0.098	0.000023	5.95E-04	1.39E-03	1E-05	0.01	41%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.06E-03	1	0.0000025	4.37E-04	1.02E-03	1E-06	0.001	3%	0.4%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	2.31E-04	0.003	0.000034	9.49E-05	2.21E-04	3E-06	0.07	10%	27%
Tetrachloroethene	2.02E-03	0.27	0.0000059	8.31E-04	1.94E-03	5E-06	0.007	15%	3%
Toluene	9.57E-03	5	NA	NA	9.17E-03	NA	0.002	NA	0.7%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	2.20E-03	0.1	NA	NA	2.11E-03	NA	0.02	NA	8%
1									
Total						3E-05	0.3	100%	100%

$$ADE = rac{EPC_{air} imes ET imes EF imes ED}{AT}$$
 $HI_{inh} = rac{ADE}{RfC}$
 $Risk = ADE imes URF imes CF$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

mg/m3 - milligram per cubic meter

Attachment A

Risk Tables

Table A1. Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-4 26/05/05 South

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	5
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	43800
CF	Conversion Factor	ug/mg	1000

	EPC (a)	RfC	URF	ADE-c	ADE-nc	Cancer Risk Indoor Air	HI Indoor Air	% of Total Cancer Risk	% of Total Noncancer H
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
Сотроина	(mg/mo)	(mg/mo/	ii (agiiio)	mg/mo	mg/mo	(unitable)	(41111111111111111111111111111111111111	(411111000)	(umusus)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	5.65E-04	0.007	NA	NA	5.42E-04	NA	0.08	NA	21%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	7.16E-04	2.4	0.000026	4.90E-05	6.87E-04	1E-06	0.0003	17%	0.08%
1,2-Dichloropropane	9.70E-05	0.004	0.00001	6.64E-06	9.30E-05	7E-08	0.02	0.9%	6%
1,3-Butadiene	1.24E-04	0.002	0.00003	8.49E-06	1.19E-04	3E-07	0.06	3%	16%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	0.8	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.85E-04	0.03	0.0000078	4.01E-05	5.61E-04	3E-07	0.02	4%	5%
Bromodichloromethane	1.61E-04	NA	0.000037	1.10E-05	NA	4E-07	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.91E-04	0.1	0.000006	3.36E-05	4.71E-04	2E-07	0.005	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.97E-03	0.098	0.000023	1.35E-04	1.89E-03	3E-06	0.02	41%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.80E-03	1	0.0000025	1.23E-04	1.73E-03	3E-07	0.002	4%	0.5%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	3.51E-04	0.003	0.000034	2.40E-05	3.37E-04	8E-07	0.1	11%	31%
Tetrachloroethene	1.82E-03	0.27	0.0000059	1.25E-04	1.75E-03	7E-07	0.006	10%	2%
Toluene	1.55E-02	5	NA	NA	1.49E-02	NA	0.003	NA	0.8%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	3.70E-03	0.1	NA	NA	3.55E-03	NA	0.04	NA	10%
Total						7E-06	0.4	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

Table A2. Estimated Risks to a Resident from Long Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-4 26/05/05 South

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	30
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	262800
CF	Conversion Factor	ug/mg	1000

	EPC (a)					Cancer Risk	HI	% of Total	% of Total
	Indoor Air	RfC	URF	ADE-c	ADE-nc	Indoor Air	Indoor Air	Cancer Risk	Noncancer H
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1.1.1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1.1.2-Trichloroethane	ND ND	NA	0.000016	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
1,1,2-mchloroethane	ND ND	NA NA	0.000016	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
1.1-Dichloroethene	ND ND	0.2	0.0000016 NA	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
,	5.65E-04	0.2	NA NA	NA NA	5.42E-04	NA NA	0.08	NA NA	21%
1,2,4-Trimethylbenzene 1,2-Dibromoethane	5.65E-04 ND	0.007	0.0006	NA ND	5.42E-04 ND	NA ND	0.08 ND	NA NA	NA
,									
1,2-Dichloroethane	7.16E-04	2.4	0.000026	2.94E-04	6.87E-04	8E-06	0.0003	17%	0%
1,2-Dichloropropane	9.70E-05	0.004	0.00001	3.99E-05	9.30E-05	4E-07	0.02	1%	6%
1,3-Butadiene	1.24E-04	0.002	0.00003	5.10E-05	1.19E-04	2E-06	0.1	3%	16%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	0.8	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.85E-04	0.03	0.0000078	2.40E-04	5.61E-04	2E-06	0.02	4%	5%
Bromodichloromethane	1.61E-04	NA	0.000037	6.62E-05	NA	2E-06	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.91E-04	0.1	0.000006	2.02E-04	4.71E-04	1E-06	0.005	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.97E-03	0.098	0.000023	8.10E-04	1.89E-03	2E-05	0.02	41%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.80E-03	1	0.0000025	7.40E-04	1.73E-03	2E-06	0.002	4%	0.5%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	3.51E-04	0.003	0.000034	1.44E-04	3.37E-04	5E-06	0.1	11%	31%
Tetrachloroethene	1.82E-03	0.27	0.0000059	7.48E-04	1.75E-03	4E-06	0.006	10%	2%
Toluene	1.55E-02	5	NA	NA	1.49E-02	NA	0.003	NA	0.8%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA NA
Vinvl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA NA	NA NA
Xylenes	3.70E-03	0.1	NA	NA	3.55E-03	NA	0.04	NA	10%
Total						4E-05	0.4	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

Table A3. Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-5 26/05/05 South

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	5
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	43800
CF	Conversion Factor	ug/mg	1000

	EPC (a)					Cancer Risk	HI	% of Total	% of Total
	Indoor Air	RfC	URF	ADE-c	ADE-nc	Indoor Air	Indoor Air	Cancer Risk	Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
A A A Total and the con-	ND	_	N10	ND	ND	ND	ND		N.A
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	5.75E-04	0.007	NA	NA	5.51E-04	NA	0.08	NA	21%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	7.12E-04	2.4	0.000026	4.88E-05	6.83E-04	1E-06	0.0003	16%	0.07%
1,2-Dichloropropane	1.02E-04	0.004	0.00001	6.99E-06	9.78E-05	7E-08	0.02	0.9%	6%
1,3-Butadiene	1.37E-04	0.002	0.00003	9.38E-06	1.31E-04	3E-07	0.07	4%	17%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	0.8	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.43E-04	0.03	0.0000078	3.72E-05	5.21E-04	3E-07	0.02	4%	5%
Bromodichloromethane	1.54E-04	NA	0.000037	1.05E-05	NA	4E-07	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.84E-04	0.1	0.000006	3.32E-05	4.64E-04	2E-07	0.005	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	2.00E-03	0.098	0.000023	1.37E-04	1.92E-03	3E-06	0.02	40%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.84E-03	1	0.0000025	1.26E-04	1.76E-03	3E-07	0.002	4%	0.5%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	3.83E-04	0.003	0.000034	2.62E-05	3.67E-04	9E-07	0.1	11%	32%
Tetrachloroethene	2.34E-03	0.27	0.0000059	1.60E-04	2.24E-03	9E-07	0.008	12%	2%
Toluene	1.67E-02	5	NA	NA	1.60E-02	NA	0.003	NA	0.8%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA NA	NA NA
Xylenes	3.71E-03	0.1	NA	NA	3.56E-03	NA	0.04	NA	9%
Total						8E-06	0.4	100%	100%
างเลเ						o⊑-06	0.4	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

Table A4. Estimated Risks to a Resident from Long Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-5 26/05/05 South

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	30
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	262800
CF	Conversion Factor	ug/mg	1000

	EPC (a)	RfC	URF	ADE-c	ADE-nc	Cancer Risk Indoor Air	HI Indoor Air	% of Total Cancer Risk	% of Total Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	5.75E-04	0.007	NA	NA	5.51E-04	NA	0.08	NA	21%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	7.12E-04	2.4	0.000026	2.93E-04	6.83E-04	8E-06	0.0003	16%	0.07%
1,2-Dichloropropane	1.02E-04	0.004	0.00001	4.19E-05	9.78E-05	4E-07	0.02	0.9%	6%
1,3-Butadiene	1.37E-04	0.002	0.00003	5.63E-05	1.31E-04	2E-06	0.1	4%	17%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	8.0	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.43E-04	0.03	0.0000078	2.23E-04	5.21E-04	2E-06	0.02	4%	5%
Bromodichloromethane	1.54E-04	NA	0.000037	6.33E-05	NA	2E-06	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.84E-04	0.1	0.000006	1.99E-04	4.64E-04	1E-06	0.005	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	2.00E-03	0.098	0.000023	8.22E-04	1.92E-03	2E-05	0.02	40%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.84E-03	1	0.0000025	7.56E-04	1.76E-03	2E-06	0.002	4%	0.5%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	3.83E-04	0.003	0.000034	1.57E-04	3.67E-04	5E-06	0.1	11%	32%
Tetrachloroethene	2.34E-03	0.27	0.0000059	9.62E-04	2.24E-03	6E-06	0.008	12%	2%
Toluene	1.67E-02	5	NA	NA	1.60E-02	NA	0.003	NA	0.8%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	3.71E-03	0.1	NA	NA	3.56E-03	NA	0.04	NA	9%
Total						5E-05	0.4	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

Table A5. Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-4 26/05/05 South Combined Risks

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	5
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	43800
CF	Conversion Factor	ug/mg	1000

	EPC (a)					Cancer Risk	HI	% of Total	% of Total
	Indoor Air	RfC	URF	ADE-c	ADE-nc	Indoor Air	Indoor Air	Cancer Risk	Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	3.83E-04	0.007	NA	NA	3.67E-04	NA	0.05	NA	19%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	4.21E-04	2.4	0.000026	2.88E-05	4.03E-04	7E-07	0.00017	13%	0.06%
1,2-Dichloropropane	7.16E-05	0.004	0.00001	4.90E-06	6.87E-05	5E-08	0.02	0.9%	6%
1,3-Butadiene	1.36E-04	0.002	0.00003	9.32E-06	1.30E-04	3E-07	0.07	5%	24%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	8.0	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.35E-04	0.03	0.0000078	3.66E-05	5.13E-04	3E-07	0.02	5%	6%
Bromodichloromethane	1.14E-04	NA	0.000037	7.81E-06	NA	3E-07	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.25E-04	0.1	0.000006	2.91E-05	4.07E-04	2E-07	0.004	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.58E-03	0.098	0.000023	1.08E-04	1.51E-03	2E-06	0.02	43%	6%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.06E-03	1	0.0000025	7.25E-05	1.02E-03	2E-07	0.001	3%	0.4%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	2.21E-04	0.003	0.000034	1.52E-05	2.12E-04	5E-07	0.07	9%	26%
Tetrachloroethene	1.86E-03	0.27	0.0000059	1.27E-04	1.78E-03	8E-07	0.007	13%	2%
Toluene	9.30E-03	5	NA	NA	8.92E-03	NA	0.002	NA	0.7%
trans-1.2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	2.20E-03	0.1	NA	NA	2.11E-03	NA NA	0.02	NA	8%
		"			50		0.02		
Total						6E-06	0.3	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

Table A6. Estimated Risks to a Resident from Long Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-4 26/05/05 South Combined Risks

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	30
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	262800
CF	Conversion Factor	ug/mg	1000

Compound 1.1.1-Trichloroethane	Indoor Air (mg/m3)	RfC (mg/m3)	URF	ADE-c					
	(mg/m3)	(mg/m3)		ADE	ADE-nc	Indoor Air	Indoor Air	Cancer Risk	Noncancer HI
1 1 1 Trichloroothono		(5,)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1 1 1 Trichloroothono									
1,1,1-111011010ethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	3.83E-04	0.007	NA	NA	3.67E-04	NA	0.05	NA	19%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	4.21E-04	2.4	0.000026	1.73E-04	4.03E-04	4E-06	0.00017	13%	0.06%
1,2-Dichloropropane	7.16E-05	0.004	0.00001	2.94E-05	6.87E-05	3E-07	0.02	0.9%	6%
1,3-Butadiene	1.36E-04	0.002	0.00003	5.59E-05	1.30E-04	2E-06	0.07	5%	24%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	0.8	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.35E-04	0.03	0.0000078	2.20E-04	5.13E-04	2E-06	0.02	5%	6%
Bromodichloromethane	1.14E-04	NA	0.000037	4.68E-05	NA	2E-06	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.25E-04	0.1	0.000006	1.74E-04	4.07E-04	1E-06	0.004	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.58E-03	0.098	0.000023	6.47E-04	1.51E-03	1E-05	0.02	43%	6%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.06E-03	1	0.0000025	4.35E-04	1.02E-03	1E-06	0.001	3%	0.4%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	2.21E-04	0.003	0.000034	9.09E-05	2.12E-04	3E-06	0.07	9%	26%
Tetrachloroethene	1.86E-03	0.27	0.0000059	7.64E-04	1.78E-03	5E-06	0.007	13%	2%
Toluene	9.30E-03	5	NA	NA	8.92E-03	NA	0.002	NA	0.7%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	2.20E-03	0.1	NA	NA	2.11E-03	NA	0.02	NA	8%
Total						3E-05	0.3	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

lotes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

Table A7. Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-5 26/05/05 South Combined Risks

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	5
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	43800
CF	Conversion Factor	ug/mg	1000

	EPC (a)					Cancer Risk	HI	% of Total	% of Total
	Indoor Air	RfC	URF	ADE-c	ADE-nc	Indoor Air	Indoor Air	Cancer Risk	Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	3.69E-04	0.007	NA	NA	3.53E-04	NA	0.05	NA	19%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	4.16E-04	2.4	0.000026	2.85E-05	3.98E-04	7E-07	0.0002	13%	0.06%
1,2-Dichloropropane	7.41E-05	0.004	0.00001	5.08E-06	7.11E-05	5E-08	0.02	0.9%	7%
1,3-Butadiene	1.28E-04	0.002	0.00003	8.78E-06	1.23E-04	3E-07	0.06	5%	23%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	8.0	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.04E-04	0.03	0.0000078	3.45E-05	4.83E-04	3E-07	0.02	5%	6%
Bromodichloromethane	1.11E-04	NA	0.000037	7.57E-06	NA	3E-07	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.12E-04	0.1	0.000006	2.82E-05	3.95E-04	2E-07	0.004	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.32E-03	0.098	0.000023	9.06E-05	1.27E-03	2E-06	0.01	38%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.07E-03	1	0.0000025	7.33E-05	1.03E-03	2E-07	0.001	3%	0.4%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	2.41E-04	0.003	0.000034	1.65E-05	2.31E-04	6E-07	0.08	10%	28%
Tetrachloroethene	2.18E-03	0.27	0.0000059	1.49E-04	2.09E-03	9E-07	0.008	16%	3%
Toluene	9.83E-03	5	NA	NA	9.43E-03	NA	0.002	NA	0.7%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	2.19E-03	0.1	NA	NA	2.10E-03	NA	0.02	NA	8%
Total						5E-06	0.3	100%	100%
		-		-		02 00	0.0	10070	10070

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected

Table A8. Estimated Risks to a Resident from Short Term Exposure to Volatile Constituents in Indoor Air via Inhalation - Sample IA-5 26/05/05 South Combined Risks

Parameter	Definition	Units	Value
ET	Indoor Air Exposure Time	hours/day	24
EF	Indoor Air Exposure Frequency	days/yr	350
ED	Indoor Air Exposure Duration	years	30
ATc	Indoor Air Averaging Time - Cancer	hours	613200
ATn	Indoor Air Averaging Time - Non-Cancer	hours	262800
CF	Conversion Factor	ug/mg	1000

	EPC (a)					Cancer Risk	HI	% of Total	% of Total
	Indoor Air	RfC	URF	ADE-c	ADE-nc	Indoor Air	Indoor Air	Cancer Risk	Noncancer HI
Compound	(mg/m3)	(mg/m3)	1/(ug/m3)	mg/m3	mg/m3	(unitless)	(unitless)	(unitless)	(unitless)
1,1,1-Trichloroethane	ND	5	NA	ND	ND	ND	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	0.000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethane	ND	NA	0.0000016	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	3.69E-04	0.007	NA	NA	3.53E-04	NA	0.05	NA	19%
1,2-Dibromoethane	ND	0.009	0.0006	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	4.16E-04	2.4	0.000026	1.71E-04	3.98E-04	4E-06	0.0002	13%	0.06%
1,2-Dichloropropane	7.41E-05	0.004	0.00001	3.05E-05	7.11E-05	3E-07	0.02	0.9%	7%
1,3-Butadiene	1.28E-04	0.002	0.00003	5.27E-05	1.23E-04	2E-06	0.06	5%	23%
1,3-Dichlorobenzene	ND	0.2	NA	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	ND	8.0	0.000011	ND	ND	ND	ND	NA	NA
Benzene	5.04E-04	0.03	0.0000078	2.07E-04	4.83E-04	2E-06	0.02	5%	6%
Bromodichloromethane	1.11E-04	NA	0.000037	4.54E-05	NA	2E-06	NA	5%	NA
Bromoform	ND	NA	0.0000011	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	4.12E-04	0.1	0.000006	1.69E-04	3.95E-04	1E-06	0.004	3%	1%
Chlorobenzene	ND	0.05	NA	ND	ND	ND	ND	NA	NA
Chloroform	1.32E-03	0.098	0.000023	5.44E-04	1.27E-03	1E-05	0.01	38%	5%
cis-1,2-Dichloroethene	ND	0.035	NA	ND	ND	ND	ND	NA	NA
Ethylbenzene	1.07E-03	1	0.0000025	4.40E-04	1.03E-03	1E-06	0.001	3%	0.4%
Isopropylbenzene	ND	0.4	NA	ND	ND	ND	ND	NA	NA
Methylene chloride	ND	1	0.00000047	ND	ND	ND	ND	NA	NA
Methyl tert butyl ether	ND	3	0.00000026	ND	ND	ND	ND	NA	NA
Naphthalene	2.41E-04	0.003	0.000034	9.89E-05	2.31E-04	3E-06	0.08	10%	28%
Tetrachloroethene	2.18E-03	0.27	0.0000059	8.97E-04	2.09E-03	5E-06	0.008	16%	3%
Toluene	9.83E-03	5	NA	NA	9.43E-03	NA	0.002	NA	0.7%
trans-1,2-Dichloroethene	ND	0.06	NA	ND	ND	ND	ND	NA	NA
trans-1,3-Dichloropropene	ND	0.02	0.000004	ND	ND	ND	ND	NA	NA
Trichloroethene	ND	NA	0.000002	ND	ND	ND	ND	NA	NA
Vinyl chloride	ND	0.1	0.0000044	ND	ND	ND	ND	NA	NA
Xylenes	2.19E-03	0.1	NA	NA	2.10E-03	NA	0.02	NA	8%
_									
Total						3E-05	0.3	100%	100%

$$ADE = \frac{EPC_{air} \times ET \times EF \times ED}{AT}$$

$$HI_{inh} = \frac{ADE}{RfC}$$

$$Risk = ADE \times URF \times CF$$

Notes:

(a) EPC calculated as average of detected concentrations and one-half indoor air detection limit for non-detects.

EC = exposure concentration

EPC - exposure point concentration

RfC - reference concentration

URF - unit risk factor

ADE-c - average daily exposure (cancer)

ADE-nc - average daily exposure (noncancer)

HI - noncancer hazard index

ug/mg3 - microgram per cubic milligram

NA - Not available

ND - Not detected